Abstract
A kind of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x nanocomposite (SB-15) was synthesized with polyvinyl alcohol (PVA) as a template by solid state synthesis. XRD and HR-TEM confirmed the formation of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x. Particle size is found to be about 18 nm from HR-TEM images. FE-SEM clearly detected the boundary between SnO2 nanoparticles and Bi2O3 polyhedron particles. The special morphology and coexisting of α-Bi2O3 and β-Bi2O3 in SB-15 make it have a stronger visible light absorption range as far as 725 nm. PL and photocurrent test shows that the SB-15 has the best photocarriers separation capability. About 99% decolorization ratio of Rh.B was achieved in only 5 min. About 70% Cr6+ was degraded within 20 min and it is about 60% for tetracycline in the coexisting system (Te with Cr6+ solution), introducing it as a promising photocatalytic material. This work has addressed the method of phase-selective synthesis of n–p SnO2/α ∼ Bi2O3/β ∼ Bi2O3 by convenient solid state synthesis, which should be useful for the studies of other composites.
Similar content being viewed by others
References
T. Seiyama and S. Kagawa: Study on a detector for gaseous components using semiconductive thin films. Anal. Chem. 38, 1502 (1962).
J. Zhu, Z. Lu, S.T. Aruna, D. Aurbach, and A. Gedanken: Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. ChemInform 12, 2557 (2000).
M. Yuasa, T. Masaki, T. Kida, K. Shimanoe, and N. Yamazoe: Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuators, B 136, 99 (2009).
S. Begum, T.B. Devi, and M. Ahmaruzzaman: L-lysine monohydrate mediated facile and environment friendly synthesis of SnO2 nanoparticles and their prospective applications as a catalyst for the reduction and photodegradation of aromatic compounds. J. Environ. Chem. Eng. 4, 2976 (2016).
S.K. Tammina and B.K. Mandal: Tyrosine mediated synthesis of SnO2 nanoparticles and their photocatalytic activity towards Violet 4 BSN dye. J. Mol. Liq. 221, 415 (2016).
M. Liu, Y. Hou, and X. Qu: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).
Y. Paz, Z. Luo, L. Rabenberg, and A. Heller: Photooxidative self-cleaning transparent titanium-dioxide films on glass. J. Mater. Res. 10, 2842 (1995).
F. Huber, A. Puchinger, W. Ahmad, M. Madel, S. Bauer, and K. Thonke: Controlled growth of ZnO layers and nanowires using methane as reducing precursor. J. Mater. Res. 32, 1 (2017).
A. Bhattacharjee, M. Ahmaruzzaman, and T. Sinha: A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta, Part A 136, 751 (2015).
R. He, D. Xu, B. Cheng, J. Yu, and W. Ho: Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 3, 464 (2018).
Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, and S. Yang: Nanowires of alpha- and beta-Bi2O3: Phase-selective synthesis and application in photocatalysis. Parasites Vectors 6, 1 (2011).
S.H. Hsieh, G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng, K.H. Chen, and J.J. Wu: Synthesis of Pt doped Bi2O3/RuO2 photocatalysts for hydrogen production from water splitting using visible light. J. Nanosci. Nanotechnol. 12, 5930 (2012).
X. Gou, R. Li, G. Wang, Z. Chen, and D. Wexler: Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology 20, 495 (2009).
D. Maruthamani, S. Vadivel, M. Kumaravel, B. Saravanakumar, B. Paul, S.S. Dhar, A. Habibiyangjeh, A. Manikandan, and G. Ramadoss: Fine cutting edge shaped Bi2O3 rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J. Colloid Interface Sci. 498, 449 (2017).
T. Qiu, S. Liu, H. Cai, Y. Zhou, K. Chen, Y. Huang, and Q. Feng: One step solid-state reaction synthesis, characterization, and catalytic performance of n–p SnO2/Bi2O3 composite. J. Mater. Sci.: Mater. Electron. 29, 17463 (2018).
K. Li, S. Li, J. Zhang, Z. Feng, and C. Li: Preparation and stabilization of γ-Bi2O3 photocatalyst by adding surfactant and its photocatalytic performance. Mater. Res. Express 4, 065902 (2017).
S. Sarmah and A. Kumar: Electrical and optical studies in polyaniline nanofibre–SnO2 nanocomposites. Bull. Mater. Sci. 36, 31 (2013).
R.W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky: Synthesis, characterization, and properties of nanophase TiO2. MRS Proc. 132, 1367 (1988).
S. Gnanam and V. Rajendran: Preparation of Cd-doped SnO2 nanoparticles by sol–gel route and their optical properties. J. Sol-Gel Sci. Technol. 56, 128 (2010).
L. Hao, H. Huang, Y. Guo, X. Du, and Y. Zhang: Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight. Appl. Surf. Sci. 420, 303 (2017).
L. Yang, Y. Fan, and X. Yang: Size-controlled synthesis and characterization of quantum-size SnO2 nanocrystallites by a solvothermal route. Colloids Surf., A 312, 219 (2008).
G. Zhang, C. Xie, S. Zhang, S. Zhang, and Y. Xiong: Defect chemistry of the metal cation defects in the p- and n-doped SnO2 nanocrystalline films. J. Phys. Chem. C 118, 18097 (2014).
Y. Bian, Y. Ma, Y. Shang, P. Tan, and J. Pan: Self-integrated β-Bi2O3/Bi2O2.33@Bi2O2CO3 ternary composites: Formation mechanism and visible light photocatalytic activity. Appl. Surf. Sci. 430, 613 (2018).
V. Dolocan and F. Iova: Optical properties of Bi2O3 thin films. Phys. Status Solidi 64, 755 (2010).
A. Hafaiedh and N. Bouarissa: Quantum confinement effects on energy gaps and electron and hole effective masses of quantum well AlN. Phys. E 43, 1638 (2011).
J. Xie, X. Lü, M. Chen, G. Zhao, Y. Song, and S. Lu: The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I), and Co(II)-doped Bi2O3. Dyes Pigm. 77, 43 (2008).
A. Seza, F. Soleimani, N. Naseri, M. Soltaninejad, S.M. Montazeri, S.K. Sadrnezhaad, M.R. Mohammadi, H.A. Moghadam, M. Forouzandeh, and M.H. Amin: Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting. Appl. Surf. Sci. 440, 153 (2018).
T.W. Kim, D.U. Lee, and Y.S. Yoon: Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J. Appl. Phys. 88, 3759 (2000).
J. Jin, S.P. Choi, C.I. Chang, C.S. Dong, S.P. Jin, B.T. Lee, Y.J. Park, and H.J. Song: Photoluminescence properties of SnO2 thin films grown by thermal CVD. Solid State Commun. 127, 595 (2003).
L. Wang, T. Fei, J. Deng, Z. Lou, R. Wang, and T. Zhang: Synthesis of rattle-type SnO2 structures with porous shells. J. Mater. Chem. 22, 18111 (2012).
F. Gu, S. Fen Wang, C.F. Song, M.K. Lü, Y.X. Qi, G. Jun Zhou, D. Xu, and D.R. Yuan: Synthesis and luminescence properties of SnO2 nanoparticles. Chem. Phys. Lett. 372, 451 (2003).
M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani: A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci.: Mater. Electron. 25, 730 (2014).
A. Bhattacharjee and M. Ahmaruzzaman: Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin Y dye: A green approach. Mater. Lett. 139, 418 (2015).
H. Uchiyama, Y. Shirai, and H. Kozuka: Hydrothermal synthesis of flower-like SnO2 particles consisting of single-crystalline nanorods through crystal growth in the presence of poly(acrylic acid). RSC Adv. 2, 4839 (2012).
Y. Yang, Y. Guo, F. Liu, Y. Xing, Y. Guo, S. Zhang, G. Wan, and M. Huo: Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal., B 142, 828 (2013).
F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201 (2018).
Z. Wang, T. Hu, K. Dai, J. Zhang, and C. Liang: Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants. Chin. J. Catal. 38, 2021 (2017).
K. Qi, B. Cheng, J. Yu, and W. Ho: A review on TiO2 based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).
M. Movahedi, A. Hosseinian, N. Nazempour, M. Rahimi, and H. Salavati: Synthesis of ZnO/Bi2O3 and SnO2/Bi2O3/Bi2O4 mixed oxides and their photocatalytic activity. Iran. Chem. Commun. 3, 374 (2015).
Y. Liu, Q. Huang, G. Jiang, D. Liu, and W. Yu: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 32, 3605 (2017).
S. Huang, J. Chen, J. Zhong, J. Li, W. Hu, M. Li, K. Huang, and R. Duan: Enhanced photocatalytic performance of Ag/AgCl/SnO2 originating from efficient formation of •O2−. Mater. Chem. Phys. 201, 35 (2017).
Acknowledgments
This project was supported by the National Natural Science Foundation of China (51362003, 51762004), the Key Research Project of Hunan Provincial Department of Education (17A145), and the Key Research Project of Xinjiang Agricultural and Vocational Technical college (XJNZYKJ201502).
Author information
Authors and Affiliations
Corresponding authors
Supplementary material
Rights and permissions
About this article
Cite this article
Qiu, T., Zhu, W., Liu, S. et al. Solid state synthesis and characterization of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x photocatalyst modulated by PVA and its photocatalytic performance. Journal of Materials Research 34, 1805–1817 (2019). https://doi.org/10.1557/jmr.2019.153
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.153