Skip to main content
Log in

Solid state synthesis and characterization of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x photocatalyst modulated by PVA and its photocatalytic performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A kind of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x nanocomposite (SB-15) was synthesized with polyvinyl alcohol (PVA) as a template by solid state synthesis. XRD and HR-TEM confirmed the formation of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x. Particle size is found to be about 18 nm from HR-TEM images. FE-SEM clearly detected the boundary between SnO2 nanoparticles and Bi2O3 polyhedron particles. The special morphology and coexisting of α-Bi2O3 and β-Bi2O3 in SB-15 make it have a stronger visible light absorption range as far as 725 nm. PL and photocurrent test shows that the SB-15 has the best photocarriers separation capability. About 99% decolorization ratio of Rh.B was achieved in only 5 min. About 70% Cr6+ was degraded within 20 min and it is about 60% for tetracycline in the coexisting system (Te with Cr6+ solution), introducing it as a promising photocatalytic material. This work has addressed the method of phase-selective synthesis of n–p SnO2/α ∼ Bi2O3/β ∼ Bi2O3 by convenient solid state synthesis, which should be useful for the studies of other composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. T. Seiyama and S. Kagawa: Study on a detector for gaseous components using semiconductive thin films. Anal. Chem. 38, 1502 (1962).

    Article  Google Scholar 

  2. J. Zhu, Z. Lu, S.T. Aruna, D. Aurbach, and A. Gedanken: Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. ChemInform 12, 2557 (2000).

    CAS  Google Scholar 

  3. M. Yuasa, T. Masaki, T. Kida, K. Shimanoe, and N. Yamazoe: Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuators, B 136, 99 (2009).

    Article  CAS  Google Scholar 

  4. S. Begum, T.B. Devi, and M. Ahmaruzzaman: L-lysine monohydrate mediated facile and environment friendly synthesis of SnO2 nanoparticles and their prospective applications as a catalyst for the reduction and photodegradation of aromatic compounds. J. Environ. Chem. Eng. 4, 2976 (2016).

    Article  CAS  Google Scholar 

  5. S.K. Tammina and B.K. Mandal: Tyrosine mediated synthesis of SnO2 nanoparticles and their photocatalytic activity towards Violet 4 BSN dye. J. Mol. Liq. 221, 415 (2016).

    Article  CAS  Google Scholar 

  6. M. Liu, Y. Hou, and X. Qu: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).

    Article  CAS  Google Scholar 

  7. Y. Paz, Z. Luo, L. Rabenberg, and A. Heller: Photooxidative self-cleaning transparent titanium-dioxide films on glass. J. Mater. Res. 10, 2842 (1995).

    Article  CAS  Google Scholar 

  8. F. Huber, A. Puchinger, W. Ahmad, M. Madel, S. Bauer, and K. Thonke: Controlled growth of ZnO layers and nanowires using methane as reducing precursor. J. Mater. Res. 32, 1 (2017).

    Article  CAS  Google Scholar 

  9. A. Bhattacharjee, M. Ahmaruzzaman, and T. Sinha: A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta, Part A 136, 751 (2015).

    Article  CAS  Google Scholar 

  10. R. He, D. Xu, B. Cheng, J. Yu, and W. Ho: Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 3, 464 (2018).

    Article  CAS  Google Scholar 

  11. Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, and S. Yang: Nanowires of alpha- and beta-Bi2O3: Phase-selective synthesis and application in photocatalysis. Parasites Vectors 6, 1 (2011).

    Google Scholar 

  12. S.H. Hsieh, G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng, K.H. Chen, and J.J. Wu: Synthesis of Pt doped Bi2O3/RuO2 photocatalysts for hydrogen production from water splitting using visible light. J. Nanosci. Nanotechnol. 12, 5930 (2012).

    Article  CAS  Google Scholar 

  13. X. Gou, R. Li, G. Wang, Z. Chen, and D. Wexler: Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology 20, 495 (2009).

    Article  CAS  Google Scholar 

  14. D. Maruthamani, S. Vadivel, M. Kumaravel, B. Saravanakumar, B. Paul, S.S. Dhar, A. Habibiyangjeh, A. Manikandan, and G. Ramadoss: Fine cutting edge shaped Bi2O3 rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J. Colloid Interface Sci. 498, 449 (2017).

    Article  CAS  Google Scholar 

  15. T. Qiu, S. Liu, H. Cai, Y. Zhou, K. Chen, Y. Huang, and Q. Feng: One step solid-state reaction synthesis, characterization, and catalytic performance of n–p SnO2/Bi2O3 composite. J. Mater. Sci.: Mater. Electron. 29, 17463 (2018).

    CAS  Google Scholar 

  16. K. Li, S. Li, J. Zhang, Z. Feng, and C. Li: Preparation and stabilization of γ-Bi2O3 photocatalyst by adding surfactant and its photocatalytic performance. Mater. Res. Express 4, 065902 (2017).

    Article  CAS  Google Scholar 

  17. S. Sarmah and A. Kumar: Electrical and optical studies in polyaniline nanofibre–SnO2 nanocomposites. Bull. Mater. Sci. 36, 31 (2013).

    Article  CAS  Google Scholar 

  18. R.W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky: Synthesis, characterization, and properties of nanophase TiO2. MRS Proc. 132, 1367 (1988).

    Article  Google Scholar 

  19. S. Gnanam and V. Rajendran: Preparation of Cd-doped SnO2 nanoparticles by sol–gel route and their optical properties. J. Sol-Gel Sci. Technol. 56, 128 (2010).

    Article  CAS  Google Scholar 

  20. L. Hao, H. Huang, Y. Guo, X. Du, and Y. Zhang: Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight. Appl. Surf. Sci. 420, 303 (2017).

    Article  CAS  Google Scholar 

  21. L. Yang, Y. Fan, and X. Yang: Size-controlled synthesis and characterization of quantum-size SnO2 nanocrystallites by a solvothermal route. Colloids Surf., A 312, 219 (2008).

    Article  CAS  Google Scholar 

  22. G. Zhang, C. Xie, S. Zhang, S. Zhang, and Y. Xiong: Defect chemistry of the metal cation defects in the p- and n-doped SnO2 nanocrystalline films. J. Phys. Chem. C 118, 18097 (2014).

    Article  CAS  Google Scholar 

  23. Y. Bian, Y. Ma, Y. Shang, P. Tan, and J. Pan: Self-integrated β-Bi2O3/Bi2O2.33@Bi2O2CO3 ternary composites: Formation mechanism and visible light photocatalytic activity. Appl. Surf. Sci. 430, 613 (2018).

    Article  CAS  Google Scholar 

  24. V. Dolocan and F. Iova: Optical properties of Bi2O3 thin films. Phys. Status Solidi 64, 755 (2010).

    Article  Google Scholar 

  25. A. Hafaiedh and N. Bouarissa: Quantum confinement effects on energy gaps and electron and hole effective masses of quantum well AlN. Phys. E 43, 1638 (2011).

    Article  CAS  Google Scholar 

  26. J. Xie, X. Lü, M. Chen, G. Zhao, Y. Song, and S. Lu: The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I), and Co(II)-doped Bi2O3. Dyes Pigm. 77, 43 (2008).

    Article  CAS  Google Scholar 

  27. A. Seza, F. Soleimani, N. Naseri, M. Soltaninejad, S.M. Montazeri, S.K. Sadrnezhaad, M.R. Mohammadi, H.A. Moghadam, M. Forouzandeh, and M.H. Amin: Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting. Appl. Surf. Sci. 440, 153 (2018).

    Article  CAS  Google Scholar 

  28. T.W. Kim, D.U. Lee, and Y.S. Yoon: Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J. Appl. Phys. 88, 3759 (2000).

    Article  CAS  Google Scholar 

  29. J. Jin, S.P. Choi, C.I. Chang, C.S. Dong, S.P. Jin, B.T. Lee, Y.J. Park, and H.J. Song: Photoluminescence properties of SnO2 thin films grown by thermal CVD. Solid State Commun. 127, 595 (2003).

    Article  CAS  Google Scholar 

  30. L. Wang, T. Fei, J. Deng, Z. Lou, R. Wang, and T. Zhang: Synthesis of rattle-type SnO2 structures with porous shells. J. Mater. Chem. 22, 18111 (2012).

    Article  CAS  Google Scholar 

  31. F. Gu, S. Fen Wang, C.F. Song, M.K. Lü, Y.X. Qi, G. Jun Zhou, D. Xu, and D.R. Yuan: Synthesis and luminescence properties of SnO2 nanoparticles. Chem. Phys. Lett. 372, 451 (2003).

    Article  CAS  Google Scholar 

  32. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani: A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci.: Mater. Electron. 25, 730 (2014).

    CAS  Google Scholar 

  33. A. Bhattacharjee and M. Ahmaruzzaman: Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin Y dye: A green approach. Mater. Lett. 139, 418 (2015).

    Article  CAS  Google Scholar 

  34. H. Uchiyama, Y. Shirai, and H. Kozuka: Hydrothermal synthesis of flower-like SnO2 particles consisting of single-crystalline nanorods through crystal growth in the presence of poly(acrylic acid). RSC Adv. 2, 4839 (2012).

    Article  CAS  Google Scholar 

  35. Y. Yang, Y. Guo, F. Liu, Y. Xing, Y. Guo, S. Zhang, G. Wan, and M. Huo: Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal., B 142, 828 (2013).

    Article  CAS  Google Scholar 

  36. F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201 (2018).

    Article  CAS  Google Scholar 

  37. Z. Wang, T. Hu, K. Dai, J. Zhang, and C. Liang: Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants. Chin. J. Catal. 38, 2021 (2017).

    Article  CAS  Google Scholar 

  38. K. Qi, B. Cheng, J. Yu, and W. Ho: A review on TiO2 based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).

    Article  CAS  Google Scholar 

  39. M. Movahedi, A. Hosseinian, N. Nazempour, M. Rahimi, and H. Salavati: Synthesis of ZnO/Bi2O3 and SnO2/Bi2O3/Bi2O4 mixed oxides and their photocatalytic activity. Iran. Chem. Commun. 3, 374 (2015).

    CAS  Google Scholar 

  40. Y. Liu, Q. Huang, G. Jiang, D. Liu, and W. Yu: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 32, 3605 (2017).

    Article  CAS  Google Scholar 

  41. S. Huang, J. Chen, J. Zhong, J. Li, W. Hu, M. Li, K. Huang, and R. Duan: Enhanced photocatalytic performance of Ag/AgCl/SnO2 originating from efficient formation of O2. Mater. Chem. Phys. 201, 35 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (51362003, 51762004), the Key Research Project of Hunan Provincial Department of Education (17A145), and the Key Research Project of Xinjiang Agricultural and Vocational Technical college (XJNZYKJ201502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyou Liu or Qingge Feng.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Zhu, W., Liu, S. et al. Solid state synthesis and characterization of n–p (SnO2)1.3/(α ∼ Bi2O3)x/(β ∼ Bi2O3)1−x photocatalyst modulated by PVA and its photocatalytic performance. Journal of Materials Research 34, 1805–1817 (2019). https://doi.org/10.1557/jmr.2019.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.153

Navigation