Abstract
In this work, atomic layer deposition (ALD), as a novel strategy, has been applied to deposit MgO on nano-sized porous Si (pSi) dendrites obtained by etching Al–Si alloy for LIBs. The reversible specific capacity of pSi@MgO electrode is 969.4 mA h/g after 100 cycles at 100 mA/g between 0.01 and 1.5 V, and it presents the discharge specific capacities of 1253.0, 885.5, 642.4, 366.2, and 101.4 mA h/g at 100, 500, 1000, 2000, and 5000 mA/g, respectively. What is more, it delivers a high reversible capacity of 765.1 mA h/g even at 500 mA/g after 200 cycles. The performance improvement can be attributed to the protection of the MgO layer and built-in space of porous Si for volume expansion upon cycling. These results illustrate that ALD derived coating is a powerful strategy to enhance electrical properties of anode materials with huge volume change for lithium-ion batteries.
Similar content being viewed by others
References
Y. Ding, Z.P. Cano, A. Yu, J. Lu, and Z. Chen: Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2, 1 (2019).
K. Yao, J.P. Zheng, and Z. Liang: Binder-free freestanding flexible Si nanoparticle–multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. J. Mater. Res. 33, 482 (2018).
W-M. Zhang, J-S. Hu, Y-G. Guo, S-F. Zheng, L-S. Zhong, W-G. Song, and L-J. Wan: Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160 (2008).
Y. Liang, H. Tian, J. Repac, S-C. Liou, J. Chen, W. Han, C. Wang, and S. Ehrman: Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 13, 8 (2018).
H. Tian, Y. Liang, J. Repac, S. Zhang, C. Luo, S-C. Liou, G. Wang, S.H. Ehrman, and W. Han: Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J. Phys. Chem. C 122, 22232 (2018).
W-J. Zhang: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13 (2011).
M.N. Obrovac and V.L. Chevrier: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444 (2014).
A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).
H. Wu and Y. Cui: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414 (2012).
B. Liang, Y. Liu, and Y. Xu: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 267, 469 (2014).
H. Tian, F. Xin, X. Wang, W. He, and W. Han: High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Materiomics 1, 153 (2015).
K. Mishra, X-C. Liu, M. Geppert, J.J. Wu, J-T. Li, L. Huang, S-G. Sun, X-D. Zhou, and F-S. Ke: Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. J. Mater. Res. 33, 1553 (2018).
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75 (2011).
D.S. Jung, M.H. Ryou, Y.J. Sung, S.B. Park, and J.W. Choi: Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. U. S. A. 110, 12229 (2013).
Y. Zhao, L. Zheng, H. Wu, H. Chen, L. Su, L. Wang, Y. Wang, and M. Ren: Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochim. Acta 282, 609 (2018).
F. Dou, L. Shi, G. Chen, and D. Zhang: Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev. 2, 149 (2019).
B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu, L. Chen, Y. Chen, Q. Zhang, and J. Zhu: Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett. 15, 5750 (2015).
H. Song, H.X. Wang, Z. Lin, X. Jiang, L. Yu, J. Xu, Z. Yu, X. Zhang, Y. Liu, P. He, L. Pan, Y. Shi, H. Zhou, and K. Chen: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries. Adv. Funct. Mater. 26, 524 (2016).
Z. Lu, N. Liu, H.W. Lee, J. Zhao, W. Li, Y. Li, and Y. Cui: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540 (2015).
C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z. Bao: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042 (2013).
H. Zhao, A. Du, M. Ling, V. Battaglia, and G. Liu: Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim. Acta 209, 159 (2016).
H. Tian, X. Tan, F. Xin, C. Wang, and W. Han: Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11, 490 (2015).
M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009).
N. Liu, L.B. Hu, M.T. McDowell, A. Jackson, and Y. Cui: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487 (2011).
W. Bao, J. Wang, S. Chen, W. Li, Y. Su, F. Wu, G. Tan, and J. Lu: A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. J. Mater. Chem. A 5, 24667 (2017).
R. Yi, F. Dai, M.L. Gordin, S. Chen, and D. Wang: Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295 (2013).
D. Zhang, Y. Xu, G. Feng, Y-R. Huang, and D. Lee: Comparing sintering and atomic layer deposition as methods to mechanically reinforce nanocolloidal crystals. J. Mater. Res. 30, 3717 (2015).
C. Luo, H. Zhu, W. Luo, F. Shen, X. Fan, J. Dai, Y. Liang, C. Wang, and L. Hu: Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. ACS Appl. Mater. Interfaces 9, 14801 (2017).
G. Hwang, H. Park, T. Bok, S. Choi, S. Lee, I. Hwang, N.S. Choi, K. Seo, and S. Park: A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chem. Commun. 51, 4429 (2015).
J. Wang, Y. Zhou, Y. Hu, R. O’Hayre, and Z. Shao: Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 115, 2529 (2011).
Z. Hong, M. Wei, T. Lan, L. Jiang, and G. Cao: Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ. Sci. 5, 5408 (2012).
N.D. Petkovich, S.G. Rudisill, B.E. Wilson, A. Mukherjee, and A. Stein: Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorg. Chem. 53, 1100 (2014).
N. Savvides and B. Window: Electrical transport, optical properties, and structure of TiN films synthesized by low-energy ion assisted deposition. J. Appl. Phys. 64, 225 (1988).
S. Dong, X. Chen, L. Gu, X. Zhou, L. Li, Z. Liu, P. Han, H. Xu, J. Yao, H. Wang, X. Zhang, C. Shang, G. Cui, and L. Chen: One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ. Sci. 4, 3502 (2011).
A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin: Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J. Mater. Chem. A 1, 12850 (2013).
T. Bok, S. Choi, J. Lee, and S. Park: Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. J. Mater. Chem. A 2, 14195 (2014).
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, and Y. Cui: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014).
L.A. Riley, S. Van Atta, A.S. Cavanagh, Y. Yan, S.M. George, P. Liu, A.C. Dillon, and S-H. Lee: Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J. Power Sources 196, 3317 (2011).
I.D. Scott, Y.S. Jung, A.S. Cavanagh, Y. Yan, A.C. Dillon, S.M. George, and S.H. Lee: Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 11, 414 (2011).
X. Li, J. Liu, M.N. Banis, A. Lushington, R. Li, M. Cai, and X. Sun: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768 (2014).
X. Wang, Z. Guo, Y. Gao, and J. Wang: Atomic layer deposition of vanadium oxide thin films from tetrakis(dimethylamino)vanadium precursor. J. Mater. Res. 32, 37 (2016).
Y. Bai, D. Yan, C. Yu, L. Cao, C. Wang, J. Zhang, H. Zhu, Y-S. Hu, S. Dai, J. Lu, and W. Zhang: Core–shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power Sources 308, 75 (2016).
H. Kou, X. Li, H. Shan, L. Fan, B. Yan, and D. Li: An optimized Al2O3 layer for enhancing the anode performance of NiCo2O4 nanosheets for sodium-ion batteries. J. Mater. Chem. A 5, 17881 (2017).
X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki: Dealloying of noble-metal alloy nanoparticles. Nano Lett. 14, 2569 (2014).
J. Feng, Z. Zhang, L. Li, J. Yang, S. Xiong, and Y. Qian: Ether-based nonflammable electrolyte for room temperature sodium battery. J. Power Sources 284, 222 (2015).
J.S. Kim, W. Pfleging, R. Kohler, H.J. Seifert, T.Y. Kim, D. Byun, H-G. Jung, W. Choi, and J.K. Lee: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13 (2015).
X. Xin, X. Zhou, F. Wang, X. Yao, X. Xu, Y. Zhu, and Z. Liu: A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 22, 7724 (2012).
X. Zhou, K. Han, H. Jiang, Z. Liu, Z. Zhang, H. Ye, and Y. Liu: High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries. Electrochim. Acta 245, 14 (2017).
X. Sun, W. Si, X. Liu, J. Deng, L. Xi, L. Liu, C. Yan, and O.G. Schmidt: Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9, 168 (2014).
Y. Zhou, H. Guo, G. Yan, Z. Wang, X. Li, Z. Yang, A. Zheng, and J. Wang: Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chem. Commun. 54, 3755 (2018).
Y. Qi, C. Zhang, S. Liu, Y. Zong, and Y. Men: Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. J. Mater. Res. 33, 1506 (2018).
K.S. Chan, M.A. Miller, W. Liang, C. Ellis-Terrell, and C.K. Chan: First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries. J. Mater. Res. 31, 3657 (2016).
J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35 (2018).
X. Li, J. Liu, X. Meng, Y. Tang, M.N. Banis, J. Yang, Y. Hu, R. Li, M. Cai, and X. Sun: Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 247, 57 (2014).
Acknowledgments
This research was supported by the National Natural Science Foundation of China (51572194 and 51672189), the Key Projects of Tianjin Municipal Natural Science Foundation of China (14JCZDJC32200), and Tianjin Science and Technology Project (18PTZWHZ00020).
Author information
Authors and Affiliations
Corresponding author
Supplementary material
Rights and permissions
About this article
Cite this article
Tai, X., Li, X., Kakimov, A. et al. Optimized ALD-derived MgO coating layers enhancing silicon anode performance for lithium ion batteries. Journal of Materials Research 34, 2425–2434 (2019). https://doi.org/10.1557/jmr.2019.150
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.150