Skip to main content
Log in

Optimized ALD-derived MgO coating layers enhancing silicon anode performance for lithium ion batteries

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, atomic layer deposition (ALD), as a novel strategy, has been applied to deposit MgO on nano-sized porous Si (pSi) dendrites obtained by etching Al–Si alloy for LIBs. The reversible specific capacity of pSi@MgO electrode is 969.4 mA h/g after 100 cycles at 100 mA/g between 0.01 and 1.5 V, and it presents the discharge specific capacities of 1253.0, 885.5, 642.4, 366.2, and 101.4 mA h/g at 100, 500, 1000, 2000, and 5000 mA/g, respectively. What is more, it delivers a high reversible capacity of 765.1 mA h/g even at 500 mA/g after 200 cycles. The performance improvement can be attributed to the protection of the MgO layer and built-in space of porous Si for volume expansion upon cycling. These results illustrate that ALD derived coating is a powerful strategy to enhance electrical properties of anode materials with huge volume change for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Y. Ding, Z.P. Cano, A. Yu, J. Lu, and Z. Chen: Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2, 1 (2019).

    Article  CAS  Google Scholar 

  2. K. Yao, J.P. Zheng, and Z. Liang: Binder-free freestanding flexible Si nanoparticle–multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. J. Mater. Res. 33, 482 (2018).

    Article  CAS  Google Scholar 

  3. W-M. Zhang, J-S. Hu, Y-G. Guo, S-F. Zheng, L-S. Zhong, W-G. Song, and L-J. Wan: Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160 (2008).

    Article  CAS  Google Scholar 

  4. Y. Liang, H. Tian, J. Repac, S-C. Liou, J. Chen, W. Han, C. Wang, and S. Ehrman: Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 13, 8 (2018).

    Article  Google Scholar 

  5. H. Tian, Y. Liang, J. Repac, S. Zhang, C. Luo, S-C. Liou, G. Wang, S.H. Ehrman, and W. Han: Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J. Phys. Chem. C 122, 22232 (2018).

    Article  CAS  Google Scholar 

  6. W-J. Zhang: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13 (2011).

    Article  CAS  Google Scholar 

  7. M.N. Obrovac and V.L. Chevrier: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444 (2014).

    Article  CAS  Google Scholar 

  8. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).

    Article  CAS  Google Scholar 

  9. H. Wu and Y. Cui: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414 (2012).

    Article  CAS  Google Scholar 

  10. B. Liang, Y. Liu, and Y. Xu: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 267, 469 (2014).

    Article  CAS  Google Scholar 

  11. H. Tian, F. Xin, X. Wang, W. He, and W. Han: High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Materiomics 1, 153 (2015).

    Article  Google Scholar 

  12. K. Mishra, X-C. Liu, M. Geppert, J.J. Wu, J-T. Li, L. Huang, S-G. Sun, X-D. Zhou, and F-S. Ke: Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. J. Mater. Res. 33, 1553 (2018).

    Article  CAS  Google Scholar 

  13. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75 (2011).

    Article  CAS  Google Scholar 

  14. D.S. Jung, M.H. Ryou, Y.J. Sung, S.B. Park, and J.W. Choi: Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. U. S. A. 110, 12229 (2013).

    Article  CAS  Google Scholar 

  15. Y. Zhao, L. Zheng, H. Wu, H. Chen, L. Su, L. Wang, Y. Wang, and M. Ren: Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochim. Acta 282, 609 (2018).

    Article  CAS  Google Scholar 

  16. F. Dou, L. Shi, G. Chen, and D. Zhang: Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev. 2, 149 (2019).

    Article  CAS  Google Scholar 

  17. B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu, L. Chen, Y. Chen, Q. Zhang, and J. Zhu: Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett. 15, 5750 (2015).

    Article  CAS  Google Scholar 

  18. H. Song, H.X. Wang, Z. Lin, X. Jiang, L. Yu, J. Xu, Z. Yu, X. Zhang, Y. Liu, P. He, L. Pan, Y. Shi, H. Zhou, and K. Chen: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries. Adv. Funct. Mater. 26, 524 (2016).

    Article  CAS  Google Scholar 

  19. Z. Lu, N. Liu, H.W. Lee, J. Zhao, W. Li, Y. Li, and Y. Cui: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540 (2015).

    Article  CAS  Google Scholar 

  20. C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z. Bao: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042 (2013).

    Article  CAS  Google Scholar 

  21. H. Zhao, A. Du, M. Ling, V. Battaglia, and G. Liu: Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim. Acta 209, 159 (2016).

    Article  CAS  Google Scholar 

  22. H. Tian, X. Tan, F. Xin, C. Wang, and W. Han: Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11, 490 (2015).

    Article  CAS  Google Scholar 

  23. M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009).

    Article  CAS  Google Scholar 

  24. N. Liu, L.B. Hu, M.T. McDowell, A. Jackson, and Y. Cui: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487 (2011).

    Article  CAS  Google Scholar 

  25. W. Bao, J. Wang, S. Chen, W. Li, Y. Su, F. Wu, G. Tan, and J. Lu: A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. J. Mater. Chem. A 5, 24667 (2017).

    Article  CAS  Google Scholar 

  26. R. Yi, F. Dai, M.L. Gordin, S. Chen, and D. Wang: Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295 (2013).

    Article  CAS  Google Scholar 

  27. D. Zhang, Y. Xu, G. Feng, Y-R. Huang, and D. Lee: Comparing sintering and atomic layer deposition as methods to mechanically reinforce nanocolloidal crystals. J. Mater. Res. 30, 3717 (2015).

    Article  CAS  Google Scholar 

  28. C. Luo, H. Zhu, W. Luo, F. Shen, X. Fan, J. Dai, Y. Liang, C. Wang, and L. Hu: Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. ACS Appl. Mater. Interfaces 9, 14801 (2017).

    Article  CAS  Google Scholar 

  29. G. Hwang, H. Park, T. Bok, S. Choi, S. Lee, I. Hwang, N.S. Choi, K. Seo, and S. Park: A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chem. Commun. 51, 4429 (2015).

    Article  CAS  Google Scholar 

  30. J. Wang, Y. Zhou, Y. Hu, R. O’Hayre, and Z. Shao: Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 115, 2529 (2011).

    Article  CAS  Google Scholar 

  31. Z. Hong, M. Wei, T. Lan, L. Jiang, and G. Cao: Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ. Sci. 5, 5408 (2012).

    Article  CAS  Google Scholar 

  32. N.D. Petkovich, S.G. Rudisill, B.E. Wilson, A. Mukherjee, and A. Stein: Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorg. Chem. 53, 1100 (2014).

    Article  CAS  Google Scholar 

  33. N. Savvides and B. Window: Electrical transport, optical properties, and structure of TiN films synthesized by low-energy ion assisted deposition. J. Appl. Phys. 64, 225 (1988).

    Article  CAS  Google Scholar 

  34. S. Dong, X. Chen, L. Gu, X. Zhou, L. Li, Z. Liu, P. Han, H. Xu, J. Yao, H. Wang, X. Zhang, C. Shang, G. Cui, and L. Chen: One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ. Sci. 4, 3502 (2011).

    Article  CAS  Google Scholar 

  35. A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin: Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J. Mater. Chem. A 1, 12850 (2013).

    Article  CAS  Google Scholar 

  36. T. Bok, S. Choi, J. Lee, and S. Park: Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. J. Mater. Chem. A 2, 14195 (2014).

    Article  CAS  Google Scholar 

  37. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, and Y. Cui: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014).

    Article  CAS  Google Scholar 

  38. L.A. Riley, S. Van Atta, A.S. Cavanagh, Y. Yan, S.M. George, P. Liu, A.C. Dillon, and S-H. Lee: Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J. Power Sources 196, 3317 (2011).

    Article  CAS  Google Scholar 

  39. I.D. Scott, Y.S. Jung, A.S. Cavanagh, Y. Yan, A.C. Dillon, S.M. George, and S.H. Lee: Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 11, 414 (2011).

    Article  CAS  Google Scholar 

  40. X. Li, J. Liu, M.N. Banis, A. Lushington, R. Li, M. Cai, and X. Sun: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768 (2014).

    Article  CAS  Google Scholar 

  41. X. Wang, Z. Guo, Y. Gao, and J. Wang: Atomic layer deposition of vanadium oxide thin films from tetrakis(dimethylamino)vanadium precursor. J. Mater. Res. 32, 37 (2016).

    Article  CAS  Google Scholar 

  42. Y. Bai, D. Yan, C. Yu, L. Cao, C. Wang, J. Zhang, H. Zhu, Y-S. Hu, S. Dai, J. Lu, and W. Zhang: Core–shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power Sources 308, 75 (2016).

    Article  CAS  Google Scholar 

  43. H. Kou, X. Li, H. Shan, L. Fan, B. Yan, and D. Li: An optimized Al2O3 layer for enhancing the anode performance of NiCo2O4 nanosheets for sodium-ion batteries. J. Mater. Chem. A 5, 17881 (2017).

    Article  CAS  Google Scholar 

  44. X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki: Dealloying of noble-metal alloy nanoparticles. Nano Lett. 14, 2569 (2014).

    Article  CAS  Google Scholar 

  45. J. Feng, Z. Zhang, L. Li, J. Yang, S. Xiong, and Y. Qian: Ether-based nonflammable electrolyte for room temperature sodium battery. J. Power Sources 284, 222 (2015).

    Article  CAS  Google Scholar 

  46. J.S. Kim, W. Pfleging, R. Kohler, H.J. Seifert, T.Y. Kim, D. Byun, H-G. Jung, W. Choi, and J.K. Lee: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13 (2015).

    Article  CAS  Google Scholar 

  47. X. Xin, X. Zhou, F. Wang, X. Yao, X. Xu, Y. Zhu, and Z. Liu: A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 22, 7724 (2012).

    Article  CAS  Google Scholar 

  48. X. Zhou, K. Han, H. Jiang, Z. Liu, Z. Zhang, H. Ye, and Y. Liu: High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries. Electrochim. Acta 245, 14 (2017).

    Article  CAS  Google Scholar 

  49. X. Sun, W. Si, X. Liu, J. Deng, L. Xi, L. Liu, C. Yan, and O.G. Schmidt: Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9, 168 (2014).

    Article  CAS  Google Scholar 

  50. Y. Zhou, H. Guo, G. Yan, Z. Wang, X. Li, Z. Yang, A. Zheng, and J. Wang: Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chem. Commun. 54, 3755 (2018).

    Article  CAS  Google Scholar 

  51. Y. Qi, C. Zhang, S. Liu, Y. Zong, and Y. Men: Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. J. Mater. Res. 33, 1506 (2018).

    Article  CAS  Google Scholar 

  52. K.S. Chan, M.A. Miller, W. Liang, C. Ellis-Terrell, and C.K. Chan: First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries. J. Mater. Res. 31, 3657 (2016).

    Article  CAS  Google Scholar 

  53. J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35 (2018).

    Article  CAS  Google Scholar 

  54. X. Li, J. Liu, X. Meng, Y. Tang, M.N. Banis, J. Yang, Y. Hu, R. Li, M. Cai, and X. Sun: Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 247, 57 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (51572194 and 51672189), the Key Projects of Tianjin Municipal Natural Science Foundation of China (14JCZDJC32200), and Tianjin Science and Technology Project (18PTZWHZ00020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifei Li.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, X., Li, X., Kakimov, A. et al. Optimized ALD-derived MgO coating layers enhancing silicon anode performance for lithium ion batteries. Journal of Materials Research 34, 2425–2434 (2019). https://doi.org/10.1557/jmr.2019.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.150

Navigation