Skip to main content
Log in

Precipitation of T1 phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM

  • Advanced Materials Characterization
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aging treatment plays an important role in strengthening of 2198 Al–Li alloy. Through a serious of heat treatment processes, a large amount of precipitates emerge, mainly observed to be θ′(Al2Cu), Al3Zr, and T1(Al2CuLi), among which, T1 turns to be the most important precipitate that contributes to the strengthening of 2198 Al–Li alloy. While the temperature of the aging process is 175 °C, the density and size of T1 phase keep increasing through the process and reach peak in about 18 h. T1 phase tends to have a certain orientation relationship of \({\left({0001} \right)_{{{\rm{T}}_1}}}//{\left\{ {111} \right\}_{{\rm{AI}}}}\), \({\left\langle {1010} \right\rangle _{{{\rm{T}}_{\rm{1}}}}}//{\left\langle {110} \right\rangle _{{\rm{AI}}}}\) and may have different kinds of multilayered structures. In most of the multilayered structures, the distance between two adjacent copper-rich laths is less than that in classical single-layered phase. Thus, it can be inferred that the microstructure of T1 phase might change in the process of developing from single-layered structure to multilayered structure. In addition, the interactions between different phases become relatively frequent when the density of T1 phase reaches a threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. V. Araullo-Peters, B. Gault, F.D. Geuser, A. Deschamps, and J.M. Cairney: Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Mater. 66, 199 (2014).

    Article  CAS  Google Scholar 

  2. G. Huang and L. Wang: Development, application and prospect of aluminum–lithium alloys. Mater. Rev. 11, 21 (1997).

    CAS  Google Scholar 

  3. R.J. Rioja: The evolution of Al–Li base products for aerospace and space applications. Metall. Mater. Trans. A 43, 3325 (2012).

    Article  CAS  Google Scholar 

  4. H. Wang, C. Shi, Z. Jia, and W. Zeng: Development and current status of aluminum–lithium alloy. Hot Work. Technol. 12, 146 (2012).

    Google Scholar 

  5. S.F. Zhang, W.D. Zeng, W.H. Yang, C.L. Shi, and H.J. Wang: Ageing response of a Al–Cu–Li 2198 alloy. Mater. Des. 63, 368 (2014).

    Article  CAS  Google Scholar 

  6. T. Dursun and C. Soutis: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862 (2014).

    Article  CAS  Google Scholar 

  7. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng., A 280, 102 (2000).

    Article  Google Scholar 

  8. C. Giummarra, R.J. Rioja, G.H. Bray, P.E. Magnusen, and J.P. Moran: Al–Li alloys: Development of corrosion resistant, high toughness aluminium–lithium aerospace alloys. Proc. ICCA 1, 176 (2008).

    Google Scholar 

  9. B. Ahmed and S.J. Wu: Aluminum lithium alloys (Al–Li–Cu–X)-new generation material for aerospace applications. Appl. Mech. Mater. 440, 104 (2013).

    Article  Google Scholar 

  10. O.C. Gamboni, J.A. Moreto, L.H.C. Bonazzi, C.O.F.T. Ruchert, and W.W. Bose Filho: Effect of salt-water fog on fatigue crack nucleation of Al and Al–Li alloys. Mater. Res. 17, 250 (2014).

    Article  CAS  Google Scholar 

  11. C.S. Tsao, T.L. Lin, and M.S. Yu: An improved small-angle X-ray scattering analysis of δ′ precipitation in Al–Li alloy with hard-sphere interaction. Scr. Mater. 41, 81 (1999).

    Article  Google Scholar 

  12. S.W. Chen and C.C. Huang: Solidification curves of Al Cu, Al Mg, and Al Cu Mg alloys. Acta Mater. 44, 1955 (1996).

    Article  CAS  Google Scholar 

  13. L.Ü. Xin-Yu, E.J. Guo, P. Rometsch, and L.J. Wang: Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy. Trans. Nonferrous Met. Soc. China 22, 2645 (2012).

    Article  Google Scholar 

  14. B. Decreus, A. Deschamps, and P. Donnadieu: Understanding the mechanical properties of 2198 Al–Li–Cu alloy in relation with the intra-granular and inter-granular precipitate microstructure. J. Phys.: Conf. Ser. 240, 012096 (2010).

    Google Scholar 

  15. C. Gao, Z. Zhu, J. Han, and H. Li: Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy. Mater. Sci. Eng., A 639, 489 (2015).

    Article  CAS  Google Scholar 

  16. Y.Z. Shen, K.H. Oh, and D.N. Lee: Serrated flow behavior in 2090 Al–Li alloy. Key Eng. Mater. 345–346, 157 (2007).

    Article  Google Scholar 

  17. T. Pardoen, Y. Marchal, and F. Delannay: Thickness dependence of cracking resistance in thin aluminium plates. J. Mech. Phys. Solids 47, 2093 (1999).

    Article  CAS  Google Scholar 

  18. M.J. Kaufman, A.A. Morrone, and R.E. Lewis: Complications concerning TEM analysis of the δ-AlLi phase in aluminum–lithium alloys. Scr. Metall. Mater. 27, 1265 (1992).

    Article  CAS  Google Scholar 

  19. A.A. Alekseev, E.A. Lukina, D.V. Zaytsev, and I.N. Fridlyander: Crystal analysis of nonequilibrium δnon-phase in Al–Li–Mg alloys. Mater. Sci. Forum 519–521, 259 (2006).

    Article  Google Scholar 

  20. B.P. Mao, X.D. Yan, and J. Shen: Precipitation behavior of T1 phase during thermo-mechanical treatment of 2197 Al–Li alloy. Chin. J. of Nonferrous Met. 25, 2366 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, K., Zhu, C., Zheng, J. et al. Precipitation of T1 phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM. Journal of Materials Research 34, 3535–3544 (2019). https://doi.org/10.1557/jmr.2019.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.136

Navigation