Abstract
Anti-solvent treatment assisted crystallization is currently one of the most widely used methods to obtain high-quality perovskite films ascribed to its great operability. However, choosing a proper anti-solvent toward high-quality perovskite film for perovskite solar cells (PSCs) remains elusive. In this study, we qualitatively evaluate the impact of anti-solvent treatment on the grain growth and phase composition of perovskite by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, and UV-vis absorption measurement, etc. The results demonstrate that the chemical groups in anti-solvents also affect the formation of perovskites, and anti-solvents with a low boiling point and good polarity contribute to the superior efficiency and reproducibility of PSCs. The device prepared using ether as an anti-solvent exhibits the best power conversion efficiency of 18.47%. The results indicate a new path toward selecting an ideal anti-solvent to improve the performance of PSCs.
Similar content being viewed by others
References
Joint Research Centre: Available at: http://eC.europA.eu/jrc/eN. (accessed March 15, 2018).
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, and J.H. Noh: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C.R. Grice, A.J. Cimaroli, L. Guan, R.J. Ellingson, K. Zhu, X. Zhao, R-G. Xiong, and Y. Yan: Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).
T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, and S. Li: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7, 1700576 (2017).
S. Li, P. Zhang, Y. Wang, H. Sarvari, D. Liu, J. Wu, Y. Yang, and Z. Wang: Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 10, 1092–1103 (2017).
P. Zhang, J. Wu, T. Zhang, Y. Wang, D. Liu, H. Chen, L. Ji, C. Liu, W. Ahmad, and Z.D. Chen: Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 30, 1703737 (2018).
M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk, and Z. Fan: High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3, 1500790 (2016).
D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, and M.K. Nazeeruddin: High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 28, 2910–2915 (2016).
L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao, and Q. Gong: Morphology control of the perovskite films for efficient solar cells. Dalton Trans. 44, 10582–10593 (2015).
Y. Wang, D. Liu, P. Zhang, T. Zhang, W. Ahmad, X. Ying, F. Wang, J. Li, L. Chen, and J. Wu: Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci. China Mater. 61, 1536–1548 (2018).
Y. Wang, T. Zhang, P. Zhang, D. Liu, L. Ji, H. Chen, Z.D. Chen, J. Wu, and S. Li: Solution processed PCBM-CH3NH3PbI3 heterojunction photodetectors with enhanced performance and stability. Org. Electron. 57, 263–268 (2018).
T. Zhang, J. Wu, P. Zhang, A. Waseem, Y. Wang, A. Mahdi, H. Chen, C. Gao, Z.D. Chen, Z. Wu, and S. Li: High speed and stable solution-processed triple cation perovskite photodetectors. Adv. Opt. Mater. 6, 1701341 (2018).
Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, and B.P. Rand: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108 (2017).
M. Liu, M.B. Johnston, and H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013). https://doi.org/10.1038/nature12509
Y. Wu, F. Li, C. Han, X. Wang, H. Li, M. Cai, Z. Zhou, T. Noda, and L. Han: Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).
J. Burschka, N. Pellet, S.J. Moon, R. Humphrybaker, P. Gao, M.K. Nazeeruddin, and M. Grätzel: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013). https://doi.org/10.1038/nature12340
Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, and S.F. Liu: Thinness-and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28, 9204–9209 (2016).
Y. Wang, S. Li, P. Zhang, D. Liu, X. Gu, H. Sarvari, Z. Ye, J. Wu, Z. Wang, and Z.D. Chen: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale 8, 19654–19661 (2016).
Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, and Y. Yao: Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7, 10595–10599 (2015).
X. Manda, H. Fuzhi, H. Wenchao, D. Yasmina, Z. Ye, E. Joanne, G.W. Angus, B. Udo, C. Yi Bing, and S. Leone: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 53, 9898–9903 (2014).
S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, and P. Gao: From Nano- to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29, 3490–3498 (2017).
Y. Wang, J. Wu, P. Zhang, D. Liu, T. Zhang, L. Ji, X. Gu, Z.D. Chen, and S. Li: Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 39, 616–625 (2017).
S.K. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K.C. Goedel, S.D. Stranks, N.K. Noel, and M. Price: Atmospheric influence upon crystallization and electronic disorder and its impact on the photo-physical properties of organic–inorganic perovskite solar cells. ACS Nano 9, 2311–2320 (2015).
J. Chen, Y. Xiong, Y. Rong, A. Mei, Y. Sheng, P. Jiang, Y. Hu, X. Li, and H. Han: Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 27, 130–137 (2016).
Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, and S. Hayase: All-solid perovskite solar cells with HOCO–R–NH3+I− anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118, 16651–16659 (2014).
L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, and H. Chen: Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).
Y.C. Shih, Y.B. Lan, C.S. Li, H.C. Hsieh, L. Wang, C.I. Wu, and K.F. Lin: Amino-acid-induced preferential orientation of perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance. Small 13, 1604305 (2017).
J. Dong, X. Xu, J. Shi, D. Li, Y. Luo, Q. Meng, and Q. Chen: Suppressing charge recombination in ZnO-nanorod-based perovskite solar cells with atomic-layer-deposition TiO2. Chin. Phys. Lett. 32, 078401 (2015).
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61421002, 61574029, 61471085, and 61474015.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, J., Yang, R., Que, L. et al. Optimization of anti-solvent engineering toward high performance perovskite solar cells. Journal of Materials Research 34, 2416–2424 (2019). https://doi.org/10.1557/jmr.2019.122
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.122