Skip to main content
Log in

Optimization of anti-solvent engineering toward high performance perovskite solar cells

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Anti-solvent treatment assisted crystallization is currently one of the most widely used methods to obtain high-quality perovskite films ascribed to its great operability. However, choosing a proper anti-solvent toward high-quality perovskite film for perovskite solar cells (PSCs) remains elusive. In this study, we qualitatively evaluate the impact of anti-solvent treatment on the grain growth and phase composition of perovskite by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, and UV-vis absorption measurement, etc. The results demonstrate that the chemical groups in anti-solvents also affect the formation of perovskites, and anti-solvents with a low boiling point and good polarity contribute to the superior efficiency and reproducibility of PSCs. The device prepared using ether as an anti-solvent exhibits the best power conversion efficiency of 18.47%. The results indicate a new path toward selecting an ideal anti-solvent to improve the performance of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Joint Research Centre: Available at: http://eC.europA.eu/jrc/eN. (accessed March 15, 2018).

  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  3. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, and J.H. Noh: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017). https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  4. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C.R. Grice, A.J. Cimaroli, L. Guan, R.J. Ellingson, K. Zhu, X. Zhao, R-G. Xiong, and Y. Yan: Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).

    Article  CAS  Google Scholar 

  5. T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, and S. Li: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7, 1700576 (2017).

    Article  Google Scholar 

  6. S. Li, P. Zhang, Y. Wang, H. Sarvari, D. Liu, J. Wu, Y. Yang, and Z. Wang: Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 10, 1092–1103 (2017).

    Article  CAS  Google Scholar 

  7. P. Zhang, J. Wu, T. Zhang, Y. Wang, D. Liu, H. Chen, L. Ji, C. Liu, W. Ahmad, and Z.D. Chen: Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 30, 1703737 (2018).

    Article  Google Scholar 

  8. M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk, and Z. Fan: High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3, 1500790 (2016).

    Article  Google Scholar 

  9. D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, and M.K. Nazeeruddin: High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 28, 2910–2915 (2016).

    Article  CAS  Google Scholar 

  10. L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao, and Q. Gong: Morphology control of the perovskite films for efficient solar cells. Dalton Trans. 44, 10582–10593 (2015).

    Article  CAS  Google Scholar 

  11. Y. Wang, D. Liu, P. Zhang, T. Zhang, W. Ahmad, X. Ying, F. Wang, J. Li, L. Chen, and J. Wu: Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci. China Mater. 61, 1536–1548 (2018).

    Article  CAS  Google Scholar 

  12. Y. Wang, T. Zhang, P. Zhang, D. Liu, L. Ji, H. Chen, Z.D. Chen, J. Wu, and S. Li: Solution processed PCBM-CH3NH3PbI3 heterojunction photodetectors with enhanced performance and stability. Org. Electron. 57, 263–268 (2018).

    Article  CAS  Google Scholar 

  13. T. Zhang, J. Wu, P. Zhang, A. Waseem, Y. Wang, A. Mahdi, H. Chen, C. Gao, Z.D. Chen, Z. Wu, and S. Li: High speed and stable solution-processed triple cation perovskite photodetectors. Adv. Opt. Mater. 6, 1701341 (2018).

    Article  Google Scholar 

  14. Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, and B.P. Rand: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108 (2017).

    Article  CAS  Google Scholar 

  15. M. Liu, M.B. Johnston, and H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  16. Y. Wu, F. Li, C. Han, X. Wang, H. Li, M. Cai, Z. Zhou, T. Noda, and L. Han: Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).

    Article  Google Scholar 

  17. J. Burschka, N. Pellet, S.J. Moon, R. Humphrybaker, P. Gao, M.K. Nazeeruddin, and M. Grätzel: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  18. Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, and S.F. Liu: Thinness-and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28, 9204–9209 (2016).

    Article  CAS  Google Scholar 

  19. Y. Wang, S. Li, P. Zhang, D. Liu, X. Gu, H. Sarvari, Z. Ye, J. Wu, Z. Wang, and Z.D. Chen: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale 8, 19654–19661 (2016).

    Article  CAS  Google Scholar 

  20. Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, and Y. Yao: Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7, 10595–10599 (2015).

    Article  CAS  Google Scholar 

  21. X. Manda, H. Fuzhi, H. Wenchao, D. Yasmina, Z. Ye, E. Joanne, G.W. Angus, B. Udo, C. Yi Bing, and S. Leone: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 53, 9898–9903 (2014).

    Article  Google Scholar 

  22. S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, and P. Gao: From Nano- to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29, 3490–3498 (2017).

    Article  CAS  Google Scholar 

  23. Y. Wang, J. Wu, P. Zhang, D. Liu, T. Zhang, L. Ji, X. Gu, Z.D. Chen, and S. Li: Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 39, 616–625 (2017).

    Article  CAS  Google Scholar 

  24. S.K. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K.C. Goedel, S.D. Stranks, N.K. Noel, and M. Price: Atmospheric influence upon crystallization and electronic disorder and its impact on the photo-physical properties of organic–inorganic perovskite solar cells. ACS Nano 9, 2311–2320 (2015).

    Article  CAS  Google Scholar 

  25. J. Chen, Y. Xiong, Y. Rong, A. Mei, Y. Sheng, P. Jiang, Y. Hu, X. Li, and H. Han: Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 27, 130–137 (2016).

    Article  CAS  Google Scholar 

  26. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, and S. Hayase: All-solid perovskite solar cells with HOCO–R–NH3+I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118, 16651–16659 (2014).

    Article  CAS  Google Scholar 

  27. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, and H. Chen: Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).

    Article  CAS  Google Scholar 

  28. Y.C. Shih, Y.B. Lan, C.S. Li, H.C. Hsieh, L. Wang, C.I. Wu, and K.F. Lin: Amino-acid-induced preferential orientation of perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance. Small 13, 1604305 (2017).

    Article  Google Scholar 

  29. J. Dong, X. Xu, J. Shi, D. Li, Y. Luo, Q. Meng, and Q. Chen: Suppressing charge recombination in ZnO-nanorod-based perovskite solar cells with atomic-layer-deposition TiO2. Chin. Phys. Lett. 32, 078401 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61421002, 61574029, 61471085, and 61474015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longcheng Que.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, R., Que, L. et al. Optimization of anti-solvent engineering toward high performance perovskite solar cells. Journal of Materials Research 34, 2416–2424 (2019). https://doi.org/10.1557/jmr.2019.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.122

Navigation