Skip to main content

Advertisement

Log in

Effects of polymer chemistry, concentration, and pH on doxorubicin release kinetics from hydroxyapatite-PCL-PLGA composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The objective of this study was to understand the effects of ceramic polymer composite and pH of the surrounding vicinity on the release kinetics of doxorubicin. Different concentrations of polymers with polycaprolactone (PCL), poly glycolic lactic acid (PLGA), and a blend of PCL–PLGA with hydroxyapatite (HA) were investigated for doxorubicin release at physiological pH of 7.4 and an acidic pH of 5.0 caused by immediate surgery. Burst release of 20% was observed from bare HA at pH 7.4 over a week, whereas all the polymer incorporated discs showed sustained release. The hydrophilic–hydrophobic and hydrophobic–hydrophobic interactions between the polymer and the drug altered by the surrounding pHs were found to be pivotal in controlling the release kinetics of drug. No cytotoxicity of the drug at a concentration of 50 µg per disc was observed at early time points when cultured with osteoblast cells; however, the same drug dosage inhibited osteosarcoma cell viability. This study mainly bases on the comprehension of the effects of chemistry, environment, and polymer–drug interactions, leading to a beneficial understanding towards the design of drug delivery devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. M.H. Alkhraisat, C. Rueda, J. Cabrejos-Azama, J. Lucas-Aparicio, F.T. Mariño, J.T. Garcia-Denche, L. Blanco Jerez, U. Gbureck, and E.L. Cabarcos: Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Acta Biomater. 6, 1522–1528 (2010).

    Article  CAS  Google Scholar 

  2. D.P. Otto, M.M. de Villiers, M.M. de Villiers, P. Aramwit, and G.S. Kwon: Nanotechnology in Drug Delivery (American Association of Pharmaceutical Science (AAPS) Press, Springer-Verlag, New York, 2009).

    Google Scholar 

  3. A. Bandyopadhyay, S. Bernard, W. Xue, and S. Bose: Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants. J. Am. Ceram. Soc. 89, 2675–2688 (2006).

    Article  CAS  Google Scholar 

  4. C. Rey: Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials 11, 13–15 (1990).

    Article  CAS  Google Scholar 

  5. S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, and S. Bose: Zn-and Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir 26, 4958–4964 (2010).

    Article  CAS  Google Scholar 

  6. S.K. Nandi, G. Fielding, D. Banerjee, A. Bandyopadhyay, and S. Bose: 3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. J. Mater. Res. 33, 1939–1947 (2018).

    Article  CAS  Google Scholar 

  7. M. Vallet-Regí, F. Balas, and D. Arcos: Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 46, 7548–7558 (2007).

    Article  Google Scholar 

  8. S. Bose and S. Tarafder: Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 8, 1401–1421 (2012).

    Article  CAS  Google Scholar 

  9. J.Y. Reginster and N. Burlet: Osteoporosis: A still increasing prevalence. Bone 38, S4–S9 (2006).

    Article  Google Scholar 

  10. D. Pastorino, C. Canal, and M.P. Ginebra: Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity–drug interaction. Acta Biomater. 12, 250–259 (2015).

    Article  CAS  Google Scholar 

  11. P.W. Kantoff, C.S. Higano, N.D. Shore, E. Roy Berger, E.J. Small, D.F. Penson, C.H. Redfern, A.C. Ferrari, R. Dreicer, R.B. Sims, Y. Xu, M.W. Frohlich, and P.F. Schellhammer: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  Google Scholar 

  12. D.W. Lee, D.M. Barrett, C. Mackall, R. Orentas, and S.A. Grupp: The future is now: Chimeric antigen receptors as new targeted therapies for childhood cancer 18, 2780–2790 (2012).

    CAS  Google Scholar 

  13. J.K. Vasir and V. Labhasetwar: Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat. 4, 363–374 (2005).

    Article  CAS  Google Scholar 

  14. D. Banerjee and S. Bose: Comparative effects of controlled release of sodium bicarbonate and doxorubicin on osteoblast and osteosarcoma cell viability. Mater. Today Chem. 12, 200–208 (2019).

    Article  CAS  Google Scholar 

  15. Y. Kang, P.M. Siegel, W. Shu, M. Drobnjak, S.M. Kakonen, C. Cordón-Cardo, T.A. Guise, and J. Massagué: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  Google Scholar 

  16. G. Capranico, S. Tinelli, F. Zunino, K.W. Kohn, and Y. Pommier: Effects of base mutations on topoisomerase II DNA cleavage stimulated by mAMSA in short DNA oligomers. Biochemistry 32, 145–152 (1993).

    Article  CAS  Google Scholar 

  17. W.J. Pigram, W. Fuller, and L.D. Hamilton: Stereochemistry of intercalation: Interaction of daunomycin with DNA. Nat. New Biol. 235, 17 (1972).

    Article  CAS  Google Scholar 

  18. http://www.accessdata.fda.gov/drugsatfda_docs/label/2003/050467s068lbl.pdf.

  19. W. Xue, A. Bandyopadhyay, and S. Bose: Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. J. Biomed. Mater. Res., Part B 91, 831–838 (2009).

    Article  Google Scholar 

  20. I. Takeuchi, T. Takeshita, T. Suzuki, and K. Makino: Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf., B 160, 520–526 (2017).

    Article  CAS  Google Scholar 

  21. A.G.A. Coombes, S.C. Rizzi, M. Williamson, J.E. Barralet, S. Downes, and W.A. Wallace: Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25, 315–325 (2004).

    Article  CAS  Google Scholar 

  22. S. Tarafder, K. Nansen, and S. Bose: Lovastatin release from polycaprolactone coated β-tricalcium phosphate: Effects of pH, concentration and drug–polymer interactions. Mater. Sci. Eng., C 33, 3121–3128 (2013).

    Article  CAS  Google Scholar 

  23. K. Kunieda, T. Seki, S. Nakatani, M. Wakabayashi, T. Shiro, K. Inoue, M. Sougawa, R. Kimura, and K. Harada: Implantation treatment method of slow release anticancer doxorubicin containing hydroxyapatite (DOX-HAP) complex. A basic study of a new treatment for hepatic cancer. Br. J. Cancer 67, 668 (1993).

    Article  CAS  Google Scholar 

  24. S. Tarafder, S. Banerjee, A. Bandyopadhyay, and S. Bose: Electrically polarized biphasic calcium phosphates: Adsorption and release of bovine serum albumin. Langmuir 26, 16625–16629 (2010).

    Article  CAS  Google Scholar 

  25. M. Nyan, T. Miyahara, K. Noritake, J. Hao, R. Rodriguez, S. Kuroda, and S. Kasugai: Molecular and tissue responses in the healing of rat calvarial defects after local application of simvastatin combined with alpha tricalcium phosphate. J. Biomed. Mater. Res., Part B 93, 65–73 (2010).

    Google Scholar 

  26. S. Radin, J.T. Campbell, P. Ducheyne, and J.M. Cuckler: Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials 18, 777–782 (1997).

    Article  CAS  Google Scholar 

  27. H.W. Kim, J.C. Knowles, and H.E. Kim: Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25, 1279–1287 (2004).

    Article  CAS  Google Scholar 

  28. H. Li, R.J. Hardy, and X. Gu: Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets. AAPS PharmSciTech 9, 437–443 (2008).

    Article  CAS  Google Scholar 

  29. S. Tarafder and S. Bose: Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: In vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl. Mater. Interfaces 6, 9955–9965 (2014).

    Article  CAS  Google Scholar 

  30. D.M. Saylor, C.S. Kim, D.V. Patwardhan, and J.A. Warren: Modeling microstructure development and release kinetics in controlled drug release coatings. J. Pharm. Sci. 98, 169–186 (2009).

    Article  CAS  Google Scholar 

  31. J. Siepmann, F. Lecomte, and R. Bodmeier: Diffusion-controlled drug delivery systems: Calculation of the required composition to achieve desired release profiles. J. Controlled Release 60, 379–389 (1999).

    Article  CAS  Google Scholar 

  32. Z. Hongquan, Y. Yuhua, W. Youfa, and L. Shipu: Morphology and formation mechanism of hydroxyapatite whiskers from moderately acid solution. Mater. Res. 6, 111–115 (2003).

    Article  Google Scholar 

  33. H. Xiong, S. Du, J. Ni, J. Zhou, and J. Yao: Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94, 70–83 (2016).

    Article  CAS  Google Scholar 

  34. F. Zheng, S. Wang, M. Shen, M. Zhu, and X. Shi: Antitumor efficacy of doxorubicin-loaded electrospun nano-hydroxyapatite–poly(lactic-co-glycolic acid) composite nanofibers. Polym. Chem. 4, 933–941 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the National Institutes of Health under grant numbers R01 AR066361. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Bose, S. Effects of polymer chemistry, concentration, and pH on doxorubicin release kinetics from hydroxyapatite-PCL-PLGA composite. Journal of Materials Research 34, 1692–1703 (2019). https://doi.org/10.1557/jmr.2019.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.120

Navigation