Skip to main content
Log in

Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Composite materials include various components with different structures, which cooperatively increase their properties and extend their application. In this study, the graphitic carbon nitride (g-C3N4) guest material was assembled into the porous of the SiO2 aerogel, which was prepared during the gel process. By this way, the g-C3N4 could be absolutely encapsulated into the porous of the disordered porous SiO2 aerogel. The prepared g-C3N4/SiO2 composite had a loose porous structure and exhibited the much higher photocatalytic activity to the photodegradation of rhodamine B (RhB) under visible light. The disordered porous structure enhanced photocatalytic activity, and the degradation rate reached to 96.42% in 90 min under the irradiation of visible light, which could be attributed to its high surface area and effective electron–hole separation rate. The catalyst had the much higher stability and could be easily recycled utilization. The prepared composites could be applied to degrade organic pollutants in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. W. Li and D.Y. Zhao: An overview of the synthesis of ordered mesoporous materials. Chem. Commun. 49, 943 (2013).

    Article  CAS  Google Scholar 

  2. A. Maraumoto, H. Misran, and K. Tsutsumi: Adsorption characteristics of organosilica based mesoporous materials. Langmuir 20, 7139 (2004).

    Article  CAS  Google Scholar 

  3. C.X. Zhao, Q. Liu, W. Chen, T. Gao, and L.F. Xu: Synthesis and photoluminescence of Eu(DBM)3phen/APTES-SBA-15 with morphology of pearl-like chains. Trans. Nonferrous Met. Soc. China 16, 356 (2006).

    Article  Google Scholar 

  4. A.S. Araujo and M. Jaroniec: Thermogravimetric monitoring of the MCM-41 synthesis. Thermochim. Acta 361, 175 (2000).

    Article  Google Scholar 

  5. H. Yu, L. Xia, and X.L. Zhao: Synthesis of particular symmetrical mesoporous silicon dioxide sphere. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 45, 1266 (2015).

    Article  CAS  Google Scholar 

  6. M.H. Lee, J.R. Deka, C.J. Cheng, N.F. Lu, D. Saikia, Y.C. Yang, and H.M. Kao: Synthesis of highly dispersed ultra-small nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent reduction method for catalytic hydrogen generation. Appl. Surf. Sci. 243, 764 (2019).

    Article  CAS  Google Scholar 

  7. X.S. Zhao, G.Q. Lu, and G.J. Millar: Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 35, 2075 (1996).

    Article  CAS  Google Scholar 

  8. Y.N. Yang, L. Xia, T. Zhang, B. Shi, L.N. Huang, B. Zhong, X.Y. Zhang, H.T. Wang, J. Zhang, and G.W. Wen: Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510 (2018).

    Article  CAS  Google Scholar 

  9. L. Xia, X.Y. Zhang, Y.N. Yang, J. Zhang, B. Zhong, T. Zhang, and H.T. Wang: Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium–aluminum–silicate (LAS) composites. J. Alloys Compd. 748, 154 (2018).

    Article  CAS  Google Scholar 

  10. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  11. D. Chen, J. Xu, Z. Xie, and G.Z. Shen: Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 3, 2112 (2011).

    Article  CAS  Google Scholar 

  12. L. Zhen, J.Y. Sheng, Y.H. Zhang, X.J. Li, and Y.M. Xu: Role of CeO2 as oxygen promoter in the accelerated photocatalytic degradation of phenol over rutile TiO2. Appl. Catal., B 166–167, 313 (2015).

    Google Scholar 

  13. P. Ribeirinha, C. Mateos-Pedrero, M. Boaventura, J. Sousa, and A. Mendes: CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model. Appl. Catal., B 221, 371 (2018).

    Article  CAS  Google Scholar 

  14. P.V. Kamat: TiO2 nanostructures: Recent physical chemistry advances. J. Phys. Chem. C 116, 11849 (2012).

    Article  CAS  Google Scholar 

  15. Y. Liu, L. Yu, Y. Hu, C.F. Guo, F.M. Zhang, and X.W. Lou: A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183 (2012).

    Article  CAS  Google Scholar 

  16. T.L.B. Ferreira, L.M.P. Garcia, G.H.M. Gurgel, R.M. Nascimento, M.J. Godinho, M.R.D. Bomio, F.V. Motta, and M.H.M.J. Rodrigues: Effects of MnO2/In2O3 thin films on photocatalytic degradation 17 alpha-ethynylestradiol and methylene blue in water. J. Mater. Sci.: Mater. Electron. 29, 12278 (2018).

    CAS  Google Scholar 

  17. L.D.S. Felipe, T. Laitinen, M. Pirilä, R.L. Keiski, and S. Ojala: Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3, and Ga2O3 catalysts. Top. Catal. 60, 1345 (2017).

    Article  CAS  Google Scholar 

  18. X. Li, J.G. Yu, M. Jaroniec, and X.B. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).

    Article  CAS  Google Scholar 

  19. X. Li, J.G. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    Article  CAS  Google Scholar 

  20. X. Li, J. Xie, C.J. Jiang, J.G. Yu, and P.Y. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).

    Article  CAS  Google Scholar 

  21. R.C. Shen, C.J. Jiang, Q.J. Xiang, J. Xie, and X. Li: Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci. 471, 43 (2019).

    Article  CAS  Google Scholar 

  22. S. Challagulla and S. Roy: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 14, 2764 (2017).

    Article  CAS  Google Scholar 

  23. M. Gao, L. Zhu, W.L. Ong, J. Wang, and G.W. Ho: Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catal. Sci. Technol. 5, 4703 (2015).

    Article  CAS  Google Scholar 

  24. H.R. Liu, C.J. Hu, H.F. Zhai, J.E. Yang, X.G. Liu, and H.S. Jia: Fabrication of In2O3/ZnO@Ag nanowire ternary composites with enhanced visible light photocatalytic activity. RSC Adv. 7, 37220 (2017).

    Article  CAS  Google Scholar 

  25. J. Rashid, M.A. Barakat, N. Salah, and S.S. Habib: Ag/ZnO nanoparticles thin films as visible light photocatalysts. RSC Adv. 4, 56892 (2014).

    Article  CAS  Google Scholar 

  26. H.J. You, R. Liu, C.C. Liang, S.C. Yang, F. Wang, X.G. Lu, and B.J. Ding: Gold nanoparticle doped hollow SnO2 supersymmetric nanostructures for improved photocatalysis. J. Mater. Chem. A 1, 4097 (2013).

    Article  CAS  Google Scholar 

  27. W. Wu, S.F. Zhang, F. Ren, X.H. Xiao, J. Zhou, and C.Z. Jiang: Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core–shell heterostructures: Formation mechanism, and enhanced photocatalytic activity. Nanoscale 3, 4676 (2011).

    Article  CAS  Google Scholar 

  28. J. Wang, N. Zhang, J.Z. Su, and L.J. Guo: α-Fe2O3 quantum dots: Low-cost synthesis and photocatalytic oxygen evolution capabilities. RSC Adv. 6, 41060 (2016).

    Article  CAS  Google Scholar 

  29. R.Y. Zhang, W.C. Wan, D.W. Li, F. Dong, and Y. Zhou: Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chin. J. Catal. 38, 313 (2017).

    Article  CAS  Google Scholar 

  30. S. Mahzoon, S.M. Nowee, and M. Haghighi: Synergetic combination of 1D–2D g-C3N4 heterojunction nanophotocatalyst for hydrogen production via water splitting under visible light irradiation. Renewable Energy 127, 433 (2018).

    Article  CAS  Google Scholar 

  31. Z. Feng, L. Zeng, Y.J. Chen, Y.Y. Ma, C.R. Zhao, R.S. Jin, and Y. Lu: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  32. S.R. Fu, Y.M. He, Q. Wu, Y. Wu, and T.H. Wu: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of rhodamine B. J. Mater. Res. 31, 2252 (2016).

    Article  CAS  Google Scholar 

  33. M. Wang, M.H. Fang, C. Tang, L.N. Zhang, Z.H. Huang, Y.G. Liu, and X.W. Wu: A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).

    Article  CAS  Google Scholar 

  34. J.Q. Wen, J. Xie, X.B. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    Article  CAS  Google Scholar 

  35. T.T. Yu, L.F. Liu, and F.L. Yang: Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system. Chin. J. Catal. 38, 270 (2017).

    Article  CAS  Google Scholar 

  36. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  37. S.P. Wang, C. Li, T. Wang, P. Zhang, A. Li, and J. Gong: Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2, 2885 (2014).

    Article  CAS  Google Scholar 

  38. C.C. Han, L. Ge, C.F. Chen, Y.J. Li, X.L. Xiao, Y.N. Zhang, and L.L. Guo: Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal., B 147, 546 (2014).

    Article  CAS  Google Scholar 

  39. S.M. Yin, J.Y. Han, T.H. Zhou, and R. Xu: Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications. Catal. Sci. Technol. 15, 5048 (2015).

    Article  CAS  Google Scholar 

  40. M.S. Akple, J.X. Low, S. Wageh, and J.G. Yu: Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196 (2015).

    Article  CAS  Google Scholar 

  41. S.L. Liu and J.L. Chen: Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication. J. Mater. Res. 10, 1391 (2018).

    Article  CAS  Google Scholar 

  42. A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, and S. Ramakrishna: Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A 5, 23406 (2017).

    Article  CAS  Google Scholar 

  43. Z.M. Cui, H. Yang, and X.X. Zhao: Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites. Mater. Sci. Eng., B 229, 160 (2018).

    Article  CAS  Google Scholar 

  44. Y.C. Ye, H. Yang, X.X. Wang, and W.J. Feng: Photocatalytic, fenton and photo-fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater. Sci. Semicond. Process. 82, 14 (2018).

    Article  CAS  Google Scholar 

  45. L.G. Kong, Y.M. Dong, P.P. Jiang, G.L. Wang, H.Z. Zhang, and N. Zhao: Light-assisted rapid preparation of Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water. J. Mater. Chem. A 4, 9998 (2016).

    Article  CAS  Google Scholar 

  46. X.X. Wang, S.S. Wang, W.D. Hu, J. Cai, L.H. Zhang, L.H. Dong, L.H. Zhao, and Y.M. He: Synthesis and photocatalytic activity of SiO2/g-C3N4 composite photocatalyst. Mater. Lett. 115, 53 (2014).

    Article  CAS  Google Scholar 

  47. Y. Shiraishi, S. Kanazawa, and Y. Sugano: Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774 (2014).

    Article  CAS  Google Scholar 

  48. Y. Li, H. Zhang, and P. Liu: Cross-Linked g-C3N4/rGo nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9, 3336 (2013).

    CAS  Google Scholar 

  49. F.L. Wang, Y.P. Feng, P. Chen, Y.F. Wang, Y.H. Su, Q.X. Zhang, Y.Q. Zeng, Z.J. Xie, H.J. Liu, Y. Liu, W.Y. Lv, and G.G. Liu: Photocatalytic degradation of fluroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal., B 227, 114 (2018).

    Article  CAS  Google Scholar 

  50. L.M. Sun, Y. Qi, C.J. Jia, Z. Jin, and W.L. Fan: Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 6, 2649 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the work by the National Natural Science Foundation of China (Grant No. 51572034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Li, Zw., Zheng, Rr. et al. Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity. Journal of Materials Research 34, 1785–1794 (2019). https://doi.org/10.1557/jmr.2019.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.113

Navigation