Skip to main content
Log in

Fracture sequences during elastic–plastic indentation of brittle materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A fracture analysis is developed for crack initiation sequences occurring during sharp indentation of brittle materials. Such indentations, generated by pyramidal or conical loading, generate elastic and plastic deformation. The analysis uses a nonlinear elements-in-series model to describe indentation load–displacement responses, onto which lateral, radial, cone, and median crack initiation points are located. The crack initiation points are determined by extension and application of a contact stress-field model coupled to the indentation load, originally developed by Yoffe, in combination with crack nuclei coupled to the indentation displacement to arrive at an explicit fracture model. Parameters in the analysis are adapted directly from experimental fracture and deformation measurements, and the analysis outputs are directly comparable to experimental observations. After adaptation, crack initiation loads and sequences during indentation loading and unloading of glasses and crystals are predicted by the model from material modulus, hardness, and toughness values to within about 25% of peak contact load. This work is dedicated to George M. Pharr IV on the occasion of his 65th birthday in recognition of his contributions to indentation mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. A.J. Gayle and R.F. Cook: Mapping viscoelastic and plastic properties of polymers and polymer–nanotube composites using instrumented indentation. J. Mater. Res. 31, 2347 (2016).

    Article  CAS  Google Scholar 

  3. R.F. Cook: A flexible model for instrumented indentation of viscoelastic–plastic materials. MRS Commun. 8, 586 (2018a).

    Article  CAS  Google Scholar 

  4. R.F. Cook: Model for instrumented indentation of brittle open-cell foam. MRS Commun. 8, 1267 (2018b).

    Article  CAS  Google Scholar 

  5. R.F. Cook and G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  6. R.F. Cook, E.G. Liniger, and M.R. Pascucci: Indentation fracture of polycrystalline cubic materials. J. Hard Mater. 5, 190 (1994).

    Google Scholar 

  7. R. Tandon, D.J. Green, and R.F. Cook: Surface stress effects on indentation fracture sequences. J. Am. Ceram. Soc. 73, 2619 (1990).

    Article  CAS  Google Scholar 

  8. R. Tandon and R.F. Cook: Cone crack nucleation at sharp contacts. J. Am. Ceram. Soc. 75, 2877 (1992).

    Article  CAS  Google Scholar 

  9. R. Tandon and R.F. Cook: Indentation crack initiation and propagation in tempered glass. J. Am. Ceram. Soc. 76, 885 (1993).

    Article  CAS  Google Scholar 

  10. M.M. Chaudhri and Y. Enomoto: In situ observations of indentation damage in single crystals of MgO. Wear 233–235, 717 (1999).

    Article  Google Scholar 

  11. J. Thurn, D.J. Morris, and R.F. Cook: Depth-sensing indentation at macroscopic dimensions. J. Mater. Res. 17, 2679 (2002).

    Article  CAS  Google Scholar 

  12. J. Thurn and R.F. Cook: Indentation-induced deformation at ultramicroscopic and macroscopic contacts. J. Mater. Res. 19, 124 (2004a).

    Article  CAS  Google Scholar 

  13. S. Yoshida, M. Kato, A. Yokota, S. Sasaki, A. Yamada, J. Matsuoka, N. Soga, and C.R. Kurkjian: Direct observation of indentation deformation and cracking of silicate glasses. J. Mater. Res. 30, 2291 (2015).

    Article  CAS  Google Scholar 

  14. M.L. Oyen and R.F. Cook: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139 (2003).

    Article  CAS  Google Scholar 

  15. R.F. Cook and M.L. Oyen: Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98, 370 (2007).

    Article  CAS  Google Scholar 

  16. E.H. Yoffe: Elastic stress fields caused by indenting brittle materials. Philos. Mag. A 46, 617 (1982).

    Article  CAS  Google Scholar 

  17. S. Lathabai, J. Rödel, T. Dabbs, and B.R. Lawn: Fracture mechanics model for subtheshold indentation flaws: Part I equilibrium fracture. J. Mater. Sci. 26, 2157 (1991).

    Article  CAS  Google Scholar 

  18. R.F. Cook: Fracture mechanics of the scratch strength of polycrystalline alumina. J. Am. Ceram. Soc. 100, 1146 (2017).

    Article  CAS  Google Scholar 

  19. V.R. Howes: Surface strength of coated glass. Glass Technol. 15, 148 (1974).

    Google Scholar 

  20. A. Arora, D.B. Marshall, B.R. Lawn, and M.V. Swain: Indentation deformation/fracture of normal and anomalous glasses. J. Non-Cryst. Solids 31, 415 (1979).

    Article  CAS  Google Scholar 

  21. D.B. Marshall and B.R. Lawn: Residual stress effects in sharp contact cracking Part 1: Indentation fracture mechanics. J. Mater. Sci. 14, 2001 (1979).

    Article  Google Scholar 

  22. B.R. Lawn, T.P. Dabbs, and C.J. Fairbanks: Kinetics of shear activated indentation crack initiation in soda-lime glass. J. Mater. Sci. 18, 2785 (1983).

    Article  Google Scholar 

  23. J. Alcalá: Instrumented micro-indentation of zirconia ceramics. J. Am. Ceram. Soc. 83, 1977 (2000).

    Article  Google Scholar 

  24. J. Thurn and R.F. Cook: Mechanical and thermal properties of physical vapor deposited alumina films: II, elastic, plastic, fracture and adhesive behavior. J. Mater. Sci. 39, 4809 (2004b).

    Article  CAS  Google Scholar 

  25. M. Sakai, N. Hakiri, and T. Miyajima: Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales. J. Mater. Res. 21, 2298 (2006).

    Article  CAS  Google Scholar 

  26. S.S. Chiang, D.B. Marshall, and A.G. Evans: The response of solids to elastic/plastic indentation. I. Stresses and residual stresses. J. Appl. Phys. 53, 298 (1982a).

    Article  CAS  Google Scholar 

  27. S.S. Chiang, D.B. Marshall, and A.G. Evans: The response of solids to elastic/plastic indentation. II. Fracture initiation. J. Appl. Phys. 53, 312 (1982b).

    Article  CAS  Google Scholar 

  28. X. Chen, J.W. Hutchinson, and A.G. Evans: The mechanics of indentation induced lateral cracking. J. Am. Ceram. Soc. 88, 1233 (2005).

    Article  CAS  Google Scholar 

  29. Y-W. Rhee, H-W. Kim, Y. Deng, and B.R. Lawn: Brittle fracture versus quasi plasticity in ceramics: A simple predictive index. J. Am. Ceram. Soc. 84, 561 (2001).

    Article  CAS  Google Scholar 

  30. G. Feng, S. Qu, Y. Huang, and W.D. Nix: An analytical expression for the stress field around an elastoplastic indentation/contact. Acta Mater. 55, 2929 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Cook.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, R.F. Fracture sequences during elastic–plastic indentation of brittle materials. Journal of Materials Research 34, 1633–1644 (2019). https://doi.org/10.1557/jmr.2019.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.112

Navigation