Skip to main content
Log in

Preparation and mechanical properties of selective laser melted H13 steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Process parameters (laser power and scanning speed) for H13 steel specimens produced by selective laser melting (SLM) are optimized, and microstructural characteristics and mechanical properties are investigated. The optimum process parameters are a laser power of 170 W and a scanning speed of 400 mm/s according to the maximum relative density of 99.2%. The microstructure consists of cellular grains and columnar crystal, which are composed of lath martensite and retained austenite, and there are no carbides or other second-phase particles present. The size of cellular grains is 1 µm. Compared with the common processed (forged and heat-treated) H13, SLM H13 has similar microhardness (561 HV) and tensile strength (1909 MPa) values. However, the elongation (12.4%) is a factor of ∼3 times higher and the impact energy (14.4 J) of the SLM specimen is somewhat lower. The relationship between the microstructure and mechanical properties is discussed. Fine grains and no second-phase precipitation determine the strength and plasticity of SLM samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. T.S. Srivatsan: Materials science and engineering handbook. Mater. Manuf. Processes 11, 41 (2015).

    Google Scholar 

  2. A.I.H. Committee, J.R. Davis, and L.A. Abel: Properties and selection: Irons, steels, and high-performance alloys. In Metals Handbook, Vol. 1, A.I.H. Committee, J.R. Davis, and L.A. Abel, eds. (Library of Congress Cataloging, Russell, Geauga County, Ohio, 1990); pp. 754–1004.

    Google Scholar 

  3. M. Mazur, M. Leary, M. Mcmillan, J. Elambasseril, and M. Brandt: SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp. J. 22, 504–518 (2016).

    Article  Google Scholar 

  4. W.E. Frazier: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  CAS  Google Scholar 

  5. J.J. Lewandowski and M. Seifi: Metal additive manufacturing: A review of mechanical properties. Annu. Rev. Mater. Res. 46, 151–186 (2016).

    Article  CAS  Google Scholar 

  6. I. Gibson, D. Rosen, and B. Stucker: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed. (Springer US, Boston, 2015).

    Book  Google Scholar 

  7. L. Wang, S. Wang, and J. Wu: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt. Laser Technol. 96, 88 (2017).

    Article  CAS  Google Scholar 

  8. P. Mercelis and J.P. Kruth: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12, 254 (2006).

    Article  Google Scholar 

  9. D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, and C. Song: Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Mater. Des. 117, 121 (2017).

    Article  CAS  Google Scholar 

  10. Y. Liu, Y. Yang, and D. Wang: A study on the residual stress during selective laser melting (SLM) of metallic powder. Int. J. Adv. Des. Manuf. Technol. 87, 1 (2016).

    Google Scholar 

  11. M.T. Andani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni: Spatter formation in selective laser melting process using multi-laser technology. Mater. Des. 131, 460 (2017).

    Article  Google Scholar 

  12. L. Parry, I. Ashcroft, D. Bracket, and R.D. Wildman: Investigation of residual stresses in selective laser melting. Key Eng. Mater. 627, 129 (2015).

    Article  Google Scholar 

  13. C. Suryanarayana and M. Grant Norton: Practical Aspects of X-Ray Diffraction (Springer US, Boston, 1998).

    Book  Google Scholar 

  14. D. Wang, C. Song, Y. Yang, and Y. Bai: Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 100, 291 (2016).

    Article  CAS  Google Scholar 

  15. M. Stanford, K. Kibble, M. Lindop, D. Mynors, and C. Durnall: An investigation into fully melting a maraging steel using direct laser sintering. Steel Res. Int. 79, 847 (2008).

    Google Scholar 

  16. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mater. Sci. Eng., A 667, 139 (2016).

    Article  CAS  Google Scholar 

  17. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, and L. Alzine: Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 114, 441 (2017).

    Article  CAS  Google Scholar 

  18. A.A. Antonysamy, J. Meyer, and P.B. Prangnell: Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti–6Al–4V by selective electron beam melting. Mater. Charact. 84, 153 (2013).

    Article  CAS  Google Scholar 

  19. H. Helmer, A. Bauereiß, R.F. Singer, and C. Körner: Grain structure evolution in Inconel 718 during selective electron beam melting. Mater. Sci. Eng., A 668, 180 (2016).

    Article  CAS  Google Scholar 

  20. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, and L. Alzina: Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater. Des. 131, 12 (2017).

    Article  CAS  Google Scholar 

  21. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, and J. Van Humbeeck: Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts. Phys. Procedia 83, 882 (2016).

    Article  CAS  Google Scholar 

  22. D. Matlock, G. Krauss, L.F. Ramos, and G.S Huppi: Structure and Properties of Dual-Phase Steels (AIME, New York, 1979).

    Google Scholar 

  23. M. Erdogan and S. Tekeli: The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure. Mater. Des. 23, 597 (2002).

    Article  CAS  Google Scholar 

  24. M. Zhao, J.C. Li, and Q. Jiang: Hall–Petch relationship in nanometer size range. J. Alloys Compd. 361, 160 (2003).

    Article  CAS  Google Scholar 

  25. M. Deighton: Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1976).

    Google Scholar 

  26. E. Ahmad, T. Manzoor, K.L. Ali, and J.I. Akhter: Effect of microvoid formation on the tensile properties of dual-phase steel. J. Mater. Eng. Perform. 9, 306 (2000).

    Article  CAS  Google Scholar 

  27. M. Sarwar and R. Priestner: Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J. Mater. Sci. 31, 2091 (1996).

    Article  CAS  Google Scholar 

  28. M. Sarwar, R. Priestner, and E. Ahmad: Influence of martensite volume fraction on fatigue limit of a dual-phase steel. J. Mater. Eng. Perform. 11, 274 (2002).

    Article  CAS  Google Scholar 

  29. M.A. Dang-Shen, Z. Jian, Z.Z. Chen, Z.K. Zhang, Q.A. Chen, and L.I. De-Hui: Influence of thermal homogenization treatment on structure and impact toughness of H13 ESR steel. J. Iron Steel Res. Int. 16, 56 (2009).

    Article  Google Scholar 

  30. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel. Acta Mater. 52, 2337 (2004).

    Article  CAS  Google Scholar 

  31. S.J. Wu and C.L. Davis: Investigation of the microstructure and mesotexture formed during thermomechanical controlled rolling in microalloyed steels. J. Microsc. 213, 262 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51461025), KUST Lab Research Project (No. SYYJ08), and Science Project of Yunnan Education Committee (2016ZZX044). The authors gratefully appreciate the technical EBSD support received from Xusheng Yang and Xianghui Zhu of the Chongqing University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, B., Lu, D., Zhou, R. et al. Preparation and mechanical properties of selective laser melted H13 steel. Journal of Materials Research 34, 1415–1425 (2019). https://doi.org/10.1557/jmr.2019.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.10

Navigation