Skip to main content
Log in

Continuum approaches for modeling radiation-induced self-organization in materials: From the rate theory to the phase field approach

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructural patterns resulting from self-organization are responsible for phase transitions and property changes in many materials maintained far from the thermodynamic equilibrium. Understanding the origin and the selection of possible spatiotemporal patterns for dissipative systems, i.e., systems for which the energy is not conserved, is a major theme of research opening doors to many technological applications ranging from plasmonics to metamaterials. Almost forty years after Turing’s seminal paper on patterning, progress on modeling instabilities leading to pattern formation has been achieved. The first part of this work demonstrates that main field approaches succeeded in capturing the underlying physics responsible for the formation of radiation-induced spatiotemporal patterns experimentally observed. The second part of the text highlights the interest of the phase field method, a self-consistent mean field approach, to discuss the evolution of these patterns in a universal picture neglecting specific aspects of radiation-induced dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. P. Millet and M. Tonks: Application of phase-field modeling to irradiation effects in materials. Curr. Opin. Solid State Mater. Sci. 15, 125 (2011).

    Google Scholar 

  2. Y. Li, S. Hu, and M. Stan: Application of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. npj Comput. Mater. 3, 16 (2017).

    Google Scholar 

  3. S. Hu and W. Lu: Dynamics of the self assembly of nanovoids and nanobubbles in solids. Acta Mater. 53, 1799 (2005).

    Google Scholar 

  4. S. Hu and C. Henager: Phase-field modeling of void lattice formation under irradiation. J. Nucl. Mater. 394, 155 (2009).

    CAS  Google Scholar 

  5. S. Hu, E. Burkes, C. Lavender, J. Senor, W. Setyawan, and Z. Xu: Formation mechanism of gaz bubble superlattice in UMo metal fuels: Phase-field modeling investigation. J. Nucl. Mater. 479, 202 (2016).

    CAS  Google Scholar 

  6. A.G. Khatchaturyan: Theory of Structural Transformation in Solids (Wiley Interscience, New York, New York, 1983).

    Google Scholar 

  7. P. Tolédano and V. Dmitriev: Reconstructive Phase Transitions: In Crystals and Quasicrystals (World Scientific, Singapore, 1996).

    Google Scholar 

  8. K. Elder, M. Katakowski, M. Haataja, and M. Grant: Modelling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002).

    CAS  Google Scholar 

  9. N. Ghoniem and D. Walgraef: Instabilities and Self Organization in Materials, Vol. I (Oxford Science Publications, Oxford, United Kingdom, 2008).

    Google Scholar 

  10. G. Nicolis and I. Prigogine: Self Organization in Nonequilibrium Systems: From Dissipative Structure to Order through Fluctuations (Wiley, New York, 1977).

    Google Scholar 

  11. G. Van Kampen: Processes in Physics and Chemistry (Amsterdam, New York, 1980).

    Google Scholar 

  12. D. Simeone, J. Costantini, L. Luneville, L. Desgranges, P. Trocellier, and P. Garcia: Focus issue: Characterization and modeling of radiation damage on materials: State of the art, challenges, and protocols. J. Mater. Res. 30, 1495 (2015).

    CAS  Google Scholar 

  13. K. Krishan: Self-organization and void ordering during irradiation. Nature 287, 420 (1980).

    CAS  Google Scholar 

  14. W. Jager, D. Erhart, W. Schilling, F. Dworschak, A. Gadalla, and N. Tsukuda: Peroidic 001 walls of defects in proton-irradiated Cu and Ni. Mater. Sci. Forum 15–18, 881–888 (1988).

    Google Scholar 

  15. W. Jager and H. Trinkaus: Defect ordering in metals under irradiation. J. Nucl. Mater. 205, 3949 (1993).

    Google Scholar 

  16. S. Karlin and H.M. Taylor: A First Course in Stochastic Processes (Academic Press, New York, 1975).

    Google Scholar 

  17. D. Gillespie: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35 (2007).

    CAS  Google Scholar 

  18. K. Binder and D. Stauffer: Statistical theory of nucleation, condensation and coagulation. J. Adv. Phys. 25, 343 (1976).

    CAS  Google Scholar 

  19. T. Waite: General theory of bimolecular reaction rates in solids and liquids. J. Chem. Phys. 28, 103 (1958).

    CAS  Google Scholar 

  20. C. Abromeit and H. Wollenberg: Elements of the radiation-induced structural self-organisation in materials. J. Mater. Res. 3, 640 (1988).

    Google Scholar 

  21. F. Nichols: On the estimation of sink-absorption terms in reaction-rate-theory analysis of radiation damage. J. Nucl. Mater. 75, 32 (1978).

    CAS  Google Scholar 

  22. P. Sigmund and A. Gras-Marti: Theoretical aspects of atomic mixing by ion beams. Nucl. Instrum. Methods Phys. Res., Sect. B 182, 211–219 (1981).

    Google Scholar 

  23. D. Simeone and L. Luneville: Concentration profile distortion under ion beam mixing: An example of levy flight. Phys. Rev. E 81, 021115 (2010).

    CAS  Google Scholar 

  24. M. Kiritani: Radiation effect in breeder reactor structural materials. In Radiation Effects in Breeder Reactor Structural Materials: International Conference June 19–23, 1977, Camelback Inn, Scottsdale, Arizona (1977); p. 1023.

    Google Scholar 

  25. A. Brailsford and R. Bullough: The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44, 121 (1972).

    CAS  Google Scholar 

  26. A. Dunlop, F. Rullier-Albenque, C. Jaouen, C. Templier, and J. Davenas: Materials under Irradiation (Trans Tech Publication, Les Ulis, France, 1993).

    Google Scholar 

  27. S. Maydet and K. Russel: Precipitate stability under irradiation: Point defect effects. J. Nucl. Mater. 64, 101 (1977).

    CAS  Google Scholar 

  28. R. Sizmann: The effect of radiation upon diffusion in metals. J. Nucl. Mater. 69, 386–412 (1978).

    Google Scholar 

  29. P. Berge, Y. Pomeau, and C. Vidal: L’ordre dans le chaos (Hermann Paris, Paris, France, 1984).

    Google Scholar 

  30. R. Somorjai: Physical Chemistry, Vol. XI -B (Academic Press, New York, 1975).

  31. M.C. Cross and P.C. Hohenberg: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    CAS  Google Scholar 

  32. V. Sikka and J. Moteff: Superlattice of voids in neutron-irradiated tungsteno. J. Appl. Phys. 43, 4942 (1972).

    CAS  Google Scholar 

  33. M. Beauford, M. Vallet, J. Nicolai, and J. Bardot: In situ evolution of he bubbles in sic under irradiation. J. Appl. Phys. 118, 205904 (2015).

    Google Scholar 

  34. D. Walgraef: Spatio-Temporal Pattern Formation (With Examples in Physics, Chemistry and Materials Science) (Springer-Verlag, New York, New York, 1996).

    Google Scholar 

  35. Y. Pomeau and P. Manneville: Stability and fluctuation of a spatially periodic convective flow. J. Phys., Lett. 40, 609–612 (1979).

    Google Scholar 

  36. P. Coullet, K. Emilsson, and F. Plaza: Instabilities in Nonequilibrium Structures III (Kluwer, Dorrecht, 1991).

    Google Scholar 

  37. M. Le Bellac, F. Mortessagne, and G. Batrouni: Equilibrium and Non Equilibrium Statistical Thermodynamics (Cambridge University Press, Cambridge, United Kingdom, 2010).

    Google Scholar 

  38. G. Martin: Phase stability under irradiation: Ballistic effects. Phys. Rev. B 30, 53 (1984).

    Google Scholar 

  39. B. Bergersen and Z. Racz: Dynamical generation of long-range interactions: Random levy flights in kinetic ising and spherical models. Phys. Rev. Lett. 67, 3047 (1991).

    CAS  Google Scholar 

  40. E.L. Huston, J.W. Cahn, and J.E. Hilliard: Spinodal decomposition during continuous cooling. Acta Metall. 14, 1053 (1966).

    Google Scholar 

  41. Y. Adda, M. Beyeler, and G. Brebec: Monte Carlo simulation of phase separation in chemically reactive binary mixture. Thin Solid Films 25, S28 (1975).

    Google Scholar 

  42. B. Tsaur, S. Lau, and J. Mayer: Continuous series of metastable agcu solid solutions formed by ion beam mixing. Appl. Phys. Lett. 36, 823 (1980).

    CAS  Google Scholar 

  43. L. Chen and A. Khatchaturyan: Dynamics of simultaneous orderring and phase separation and effect of long range coulomb interactions. Phys. Rev. Lett. 70, 1477 (1993).

    CAS  Google Scholar 

  44. G. Demange, L. Luneville, V. Pontikis, and D. Simeone: Prediction of irradiation induced microstructures using a multiscale method coupling atomistic and phase field modeling: Application to the agcu model alloy. J. Appl. Phys. 121, 125108–125122 (2017).

    Google Scholar 

  45. A.J. Bray: Theory of phase-ordering kinetics. J. Adv. Phys. 43, 357–459 (1994).

    Google Scholar 

  46. L. Luneville, K. Mallick, V. Pontikis, and D. Simeone: Patterning in systems driven by non local external forces. Phys. Rev. E 94, 052126 (2016).

    CAS  Google Scholar 

  47. T. Ohta and K. Kawasaki: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621 (1986).

    CAS  Google Scholar 

  48. D. Simeone, G. Demange, and L. Luneville: Disrupted coarsening in complex Cahn–Hilliard dynamics. Phys. Rev. E 88, 032116 (2013).

    Google Scholar 

  49. T. Opplestrup, V. Bulatov, G. Gilmer, M. Kalos, and B. Sadigh: First passage monte-carlo algorithm: Diffusion without all the hops. Phys. Rev. Lett. 97, 230602 (2006).

    Google Scholar 

  50. I. Biron: Thesis: Corsening Kinetics Induced by Irradiation in Pb Glasses (Orsay University, Paris, France, 1988).

    Google Scholar 

Download references

ACKNOWLEDGMENT

It is a pleasure to thank M. Athenes and A. Forestier for numerous stimulating discussions on dissipative systems and gradient flow systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Simeone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simeone, D., Ribis, J. & Luneville, L. Continuum approaches for modeling radiation-induced self-organization in materials: From the rate theory to the phase field approach. Journal of Materials Research 33, 440–454 (2018). https://doi.org/10.1557/jmr.2018.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.9

Navigation