Skip to main content
Log in

Experimental analysis and thermodynamic calculations of an additively manufactured functionally graded material of V to Invar 36

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Functionally graded materials (FGMs) in which the elemental composition intentionally varies with position can be fabricated using directed energy deposition additive manufacturing (AM). This work examines an FGM that is linearly graded from V to Invar 36 (64 wt% Fe, 36 wt% Ni). This FGM cracked during fabrication, indicating the formation of detrimental phases. The microstructure, composition, phases, and microhardness of the gradient zone were analyzed experimentally. The phase composition as a function of chemistry was predicted through thermodynamic calculations. It was determined that a significant amount of the intermetallic σ-FeV phase formed within the gradient zone. When the σ phase constituted the majority phase, catastrophic cracking occurred. The approach presented illustrates the suitability of using equilibrium thermodynamic calculations for the prediction of phase formation in FGMs made by AM despite the nonequilibrium conditions in AM, providing a route for the computationally informed design of FGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.S. Domack and J.M. Baughman: Development of nickel–titanium graded composition components. Rapid Prototyp. J. 11, 41 (2005).

    Article  Google Scholar 

  2. S. Suryakumar and M.A. Somashekara: Manufacture of functionally gradient materials using weld-deposition. In Proceedings of the 1st International Joint Symposium on Joining and Welding, H. Fujii, ed. (Woodheard Publishing Ltd., Osaka, Japan, 2013); pp. 939.

    Google Scholar 

  3. C. Shen, Z. Pan, D. Cuiuri, J. Roberts, and H. Li: Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process. Metall. Mater. Trans. B 47, 763 (2016).

    Article  CAS  Google Scholar 

  4. M.M. Nemat-Alla: Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material. Mater. Sci. Appl. 2, 1708 (2011).

    Google Scholar 

  5. D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J. Suh, A.A. Shapiro, Z-K. Liu, and J-P. Borgonia: Developing gradient metal alloys through radial deposition additive manufacturing. Sci. Rep. 4, 5357 (2014).

    Article  CAS  Google Scholar 

  6. B.E. Carroll, R. Otis, J-P. Borgonia, E. Suh, P. Dillon, A. Shapiro, D.C. Hofmann, Z-K. Liu, and A.M. Beese: Functionally graded alloy of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Mater. 108, 46 (2016).

    Article  CAS  Google Scholar 

  7. L.D. Bobbio, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, Z-K. Liu, and A.M. Beese: Additive manufacturing of a functionally graded material from Ti–6Al–4V to invar: Experimental characterization and thermodynamic calculations. Acta Mater. 127, 133 (2017).

    Article  CAS  Google Scholar 

  8. N.V. Koptseva, E.M. Golubchik, Y. Yu, D.M. Chukin, and E.M. Medvedeva: Formation of the physicomechanical properties in high strength invar alloys. Steel Translat. 44, 317 (2014).

    Article  Google Scholar 

  9. ASM Aerospace Specification Metals, Inc., 2015.

  10. R. Roy, D.K. Agrawal, and H.A. McKinstry: Very low thermal expansion coefficient materials. Annu. Rev. Mater. Res. 19, 59 (1989).

    Article  CAS  Google Scholar 

  11. I. Tomashchuk, D. Grevey, and P. Sallamand: Dissimilar laser welding of AISI 316L stainless steel to Ti–6Al–4V alloy via pure vanadium interlayer. Mater. Sci. Eng., A 622, 37 (2015).

    Article  CAS  Google Scholar 

  12. B.E. Carroll, T.A. Palmer, and A.M. Beese: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 87, 309 (2015).

    Article  CAS  Google Scholar 

  13. G.F. Vander Voort: Metallography, Principles and Practice (ASM International, Materials Park, Ohio, 1984).

    Google Scholar 

  14. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagram (Academic Press Inc., New York, 1970).

    Google Scholar 

  15. N. Saunders and A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon, Oxford, New York, 1998).

    Google Scholar 

  16. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method (Cambridge University Press, Cambridge, U.K., 2007).

    Book  Google Scholar 

  17. Z.K. Liu: First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase Equilibria Diffusion 30, 517 (2009).

    Article  CAS  Google Scholar 

  18. Z.K. Liu and Y. Wang: Computational Thermodynamics of Materials (Cambridge University Press, Cambridge, U.K., 2016).

    Book  Google Scholar 

  19. D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J-O. Suh, Z-K. Liu, and J-P. Borgonia: Compositionally graded metals: A new frontier of additive manufacturing. J. Mater. Res. 29, 1899 (2014).

    Article  CAS  Google Scholar 

  20. L.D. Bobbio, B. Bocklund, R. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, B. McEnerney, Z-K. Liu, and A.M. Beese: Characterization of a functionally graded material of Ti–6Al–4V to 304L stainless steel with an intermediate V section. J. Alloys Compd. 742, 1031 (2018).

    Article  CAS  Google Scholar 

  21. C.C. Zhao, S.Y. Yang, Y. Lu, Y.H. Guo, C.P. Wang, and X.J. Liu: Experimental investigation and thermodynamic calculation of the phase equilibria in the Fe–Ni–V system. Calphad Comput. Coupling Phase Diagrams Thermochem. 46, 80 (2014).

    Article  CAS  Google Scholar 

  22. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Thermo-Calc & DICTRA, computational tools for materials science. Calphad Comput. Coupling Phase Diagrams Thermochem 26, 273 (2002).

    Article  CAS  Google Scholar 

  23. J.F. Smith: The V (vanadium) system. Bull. Alloy Phase Diagrams 2, 40 (1981).

    Article  Google Scholar 

  24. J.R. Davis, ed.: ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (ASM International, Materials Park, OH, 2000); pp. 92–101.

    Google Scholar 

  25. P.E.A. Turchi, L. Kaufman, and Z-K. Liu: Modeling of Ni–Cr–Mo based alloys: Part II—Kinetics. Calphad Comput. Coupling Phase Diagrams Thermochem. 31, 237 (2007).

    Article  CAS  Google Scholar 

  26. Y. Ustinovshikov, B. Pushkarev, and I. Sapegina: Phase transformations in alloys of the Fe–V system. J. Alloys Compd. 398, 133 (2005).

    Article  CAS  Google Scholar 

  27. C. Hsieh and W. Wu: Overview of intermetallic sigma (σ) phase precipitation in stainless steels. ISRN Metall. 4, 1 (2012).

    Article  Google Scholar 

  28. J.I. Seki, M. Hagiwara, and T. Suzuki: Metastable order-disorder transition and sigma phase formation in Fe–V binary alloys. J. Mater. Sci. 14, 2404 (1979).

    Article  CAS  Google Scholar 

  29. G.V. Samsonov, ed.: Handbook of the Physicochemical Properties of the Elements (Springer, New York, 1968).

    Google Scholar 

  30. D.T. Hoelzer, M.K. West, S.J. Zinkle, and A.F. Rowcliffe: Solute interactions in pure vanadium and V–4Cr–4Ti alloy. J. Nucl. Mater. 283–287, 616 (2000).

    Article  Google Scholar 

  31. M. Satou, K. Abe, and H. Kayano: High-temperature deformation of modified V–Ti–Cr–Si type alloys. J. Nucl. Mater. 179, 757 (1991).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

LDB was supported by an NDSEG Fellowship. BB was supported by an NSF National Research Trainee Fellowship under grant DGE-1449785. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison M. Beese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobbio, L.D., Bocklund, B., Otis, R. et al. Experimental analysis and thermodynamic calculations of an additively manufactured functionally graded material of V to Invar 36. Journal of Materials Research 33, 1642–1649 (2018). https://doi.org/10.1557/jmr.2018.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.92

Navigation