Skip to main content

Advertisement

Log in

Impact behavior of negative stiffness honeycomb materials

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Negative stiffness honeycombs are architected metamaterials that utilize elastic buckling to absorb mechanical energy. Relative to conventional honeycomb materials, they offer several advantages, including the ability to recover their initial configuration and offer consistently repeatable mechanical energy absorption. In this paper, fully recoverable negative stiffness honeycombs are fabricated from thermoplastic and metallic parent materials. The honeycombs are subjected to quasistatic and impact loading to demonstrate the predictability and repeatability of their energy absorption characteristics across a variety of loading conditions. Results indicate that these honeycombs offer nearly ideal shock isolation by thresholding the acceleration of an isolated mass at a predetermined level and that this thresholding behavior is highly repeatable as long as the magnitude of the mechanical energy imparted to the system does not exceed the energy absorption capacity of the honeycomb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

Notes

  1. The astute reader will notice positive acceleration at the beginning of the time history plot in Fig. 4(d), caused by friction and drag forces exerted on the falling block.

References

  1. D. Correa, T. Klatt, S. Cortes, M. Haberman, D. Kovar, and C. Seepersad: Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp. J. 21, 193 (2015).

    Article  Google Scholar 

  2. D. Correa, C. Seepersad, and M. Haberman: Mechanical design of negative stiffness honeycomb materials. Integr. Mater. Manuf. Innov. 4, 1 (2015).

    Article  CAS  Google Scholar 

  3. J. Qiu, J. Lang, and A. Slocum: A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137 (2004).

    Article  Google Scholar 

  4. L. Gibson and M. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, U.K., 1999).

    Google Scholar 

  5. A. Hayes, A. Wang, B. Dempsey, and D. McDowell: Mechanics of linear cellular alloys. Mech. Mater. 36, 691 (2004).

    Article  Google Scholar 

  6. S. Papka and S. Kyriakides: In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 42, 1499 (1994).

    Article  CAS  Google Scholar 

  7. D. Balandin, N. Bolotnik, and W. Pilkey: Optimal Protection from Impact, Shock, and Vibration (Taylor and Francis, Philadelphia, PA, 2001).

    Book  Google Scholar 

  8. M. Pontecorvo, S. Barbarino, G. Murray, and F. Gandhi: Bistable arches for morphing applications. J. Intell. Mater. Syst. Struct. 24, 274 (2012).

    Article  Google Scholar 

  9. D. Restrepo, N. Mankame, and P. Zavattieri: Phase transforming cellular materials. Extreme Mech. Lett. 4, 52 (2015).

    Article  Google Scholar 

  10. A. Rafsanjani, A. Akbarzadeh, and D. Pasini: Snapping mechanical metamaterials under tension. Adv. Mater. 27, 5931 (2015).

    Article  CAS  Google Scholar 

  11. K. Che, C. Yuan, J. Wu, H. Qi, and J. Meaud: Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J. Appl. Mech. 84, 011004 (2017).

    Article  Google Scholar 

  12. S. Shan, S. Kang, J. Raney, P. Wang, L. Fang, F. Candido, J. Lewis, and K. Bertoldi: Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296 (2015).

    Article  CAS  Google Scholar 

  13. B. Haghpanah, L. Salari-Sharif, P. Pourrajab, J. Hopkins, and L. Valdevit: Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915 (2016).

    Article  CAS  Google Scholar 

  14. T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener: Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28, 5865 (2016).

    Article  CAS  Google Scholar 

  15. A. Izard, R. Alfonso, G. McKnight, and L. Valdevit: Optimal design of a cellular material encompassing negative stiffness elements for unique combinations of stiffness and elastic hysteresis. Mater. Des. 135, 37 (2017).

    Article  Google Scholar 

  16. R. Harne, Z. Wu, and K. Wang: Metastable states of a modular metastructure for programmable mechanical properties adaptation. J. Mech. Des. 138, 021401 (2016).

    Article  Google Scholar 

  17. E. Duoss, T. Weisgraber, K. Hearon, C. Zhu, W. Small, T. Metz, J. Vericella, H. Barth, J. Kuntz, R. Maxwell, C. Spadaccini, and T. Wilson: Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater. 24, 4905 (2014).

    Article  CAS  Google Scholar 

  18. T. Hewage, K. Alderson, A. Alderson, and F. Scarpa: Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv. Mater. 28, 10323 (2016).

    Article  CAS  Google Scholar 

  19. D. Leigh: A Comparison of Polyamide 11 Mechanical Properties between Laser Sintering and Traditional Molding (Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2012).

    Google Scholar 

  20. Kaiser Aluminum: Sheet Coil and Plate Alloy 7075, Technical Data (2006). Available at: www.kaiseraluminum.com (accessed November 30, 2017).

  21. C. Findeisen, J. Hohe, M. Kadic, and P. Gumbsch: Characteristics of mechanical metamaterials based on buckling elements. J. Mech. Phys. Solids 102, 151 (2017).

    Article  Google Scholar 

  22. X. Zheng, H. Lee, T. Weisgraber, M. Shusteff, J. DeOtte, E. Duoss, J. Kuntz, M. Biener, Q. Ge, J. Jackson, S. Kucheyev, N. Fang, and C. Spadaccini: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373 (2014).

    Article  CAS  Google Scholar 

  23. T. Schaedler, A. Jacobsen, A. Torrents, A. Sorensen, J. Lian, J. Greer, L. Valdevit, and W. Carter: Ultralight metallic microlattices. Science 334, 962 (2011).

    Article  CAS  Google Scholar 

  24. B. Fulcher, D. Shahan, M. Haberman, C. Seepersad, and P. Wilson: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014).

    Article  Google Scholar 

  25. N. Zhou and K. Liu: A tunable high-static-low-dynamic stiffness vibration isolator. J Sound Vib. 329, 1254 (2010).

    Article  Google Scholar 

  26. P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, and P. Stepanov: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness (Hemisphere, New York, NY, 1989).

    Google Scholar 

  27. B. Fulcher: Evaluation of systems containing negative stiffness elements for vibration and shock isolation. M.S. thesis, Mechanical Engineering Department, The University of Texas at Austin, Austin, TX, 2012.

  28. R. Harne and K. Wang: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013).

    Article  Google Scholar 

  29. D.L. Bourell, T.J. Watt, D.K. Leigh, and B. Fulcher: Performance limitations in polymer laser sintering. Phys. Procedia 56, 147 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Dr. Desiderio Kovar and Dr. Sergio Cortes for their generous assistance with the quasistatic compression tests reported in Figs. 1(b) and 3 and Nicholas Leathe, Audrey Morris-Eckart, and Tommy Woodall of Sandia National Laboratories for helpful feedback on testing and applications. The authors gratefully acknowledge financial support from the National Science Foundation under Grant No. CMMI-1435548 and the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn C. Seepersad.

Additional information

End Note

a. The astute reader will notice positive acceleration at the beginning of the time history plot in Fig. 4(d), caused by friction and drag forces exerted on the falling block.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debeau, D.A., Seepersad, C.C. & Haberman, M.R. Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research 33, 290–299 (2018). https://doi.org/10.1557/jmr.2018.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.7

Navigation