Skip to main content
Log in

Generation of cell-laden hydrogel microspheres using 3D printing-enabled microfluidics

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

3D printing has been shown to be a robust and inexpensive manufacturing tool for a range of applications within biomedical science. Here we report the design and fabrication of a 3D printer-enabled microfluidic device used to generate cell-laden hydrogel microspheres of tunable sizes. An inverse mold was printed using a 3D printer, and replica molding was used to fabricate a PDMS microfluidic device. Intersecting channel geometry was used to generate perfluorodecalin oil-coated gelatin methacrylate (GelMA) microspheres of varying sizes (35–250 µm diameters). Process parameters such as viscosity profile and UV cross-linking times were determined for a range of GelMA concentrations (7–15% w/v). Empirical relationships between flow rates of GelMA and oil phases, microspheres size, and associated swelling properties were determined. For cell experiments, GelMA was mixed with human osteosarcoma Saos-2 cells, to generate cell-laden GelMA microspheres with high long-term viability. This simple, inexpensive method does not require the use of traditional cleanroom facilities and when combined with the appropriate flow setup is robust enough to yield tunable cell-laden hydrogel microspheres for potential tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding, H. Wang, W. Cui, and D. Weitz: Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26, 2809 (2016).

    Article  CAS  Google Scholar 

  2. V. van Duinen, S.J. Trietsch, J. Joore, P. Vulto, and T. Hankemeier: Microfluidic 3D cell culture: From tools to tissue models. Curr. Opin. Biotechnol. 35, 118 (2015).

    Article  Google Scholar 

  3. A. Kang, J. Park, J. Ju, G.S. Jeong, and S-H. Lee: Cell encapsulation via microtechnologies. Biomaterials 35, 2651 (2014).

    Article  CAS  Google Scholar 

  4. Y-C. Lu, W. Song, D. An, B.J. Kim, R. Schwartz, M. Wu, and M. Ma: Designing compartmentalized hydrogel microparticles for cell encapsulation and scalable 3D cell culture. J. Mater. Chem. B 3, 353 (2015).

    Article  CAS  Google Scholar 

  5. K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini: Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254 (2015).

    Article  CAS  Google Scholar 

  6. W.H. Tan and S. Takeuchi: Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19, 2696 (2007).

    Article  CAS  Google Scholar 

  7. D. Dupin, S. Fujii, S.P. Armes, P. Reeve, and S.M. Baxter: Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization. Langmuir 22, 3381 (2006).

    Article  CAS  Google Scholar 

  8. M. Antonietti, W. Bremser, D. Mueschenborn, C. Rosenauer, B. Schupp, and M. Schmidt: Synthesis and size control of polystyrene latices via polymerization in microemulsion. Macromolecules 24, 6636 (1991).

    Article  CAS  Google Scholar 

  9. A. Kumachev, J. Greener, E. Tumarkin, E. Eiser, P.W. Zandstra, and E. Kumacheva: High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 32, 1477 (2011).

    Article  CAS  Google Scholar 

  10. J.W. Kim, A.S. Utada, A. Fernández-Nieves, Z. Hu, and D.A. Weitz: Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. 119, 1851 (2007).

    Article  Google Scholar 

  11. V.L. Workman, S.B. Dunnett, P. Kille, and D. Palmer: Microfluidic chip-based synthesis of alginate microspheres for encapsulation of immortalized human cells. Biomicrofluidics 1, 014105 (2007).

    Article  CAS  Google Scholar 

  12. T. Li, L. Zhao, W. Liu, J. Xu, and J. Wang: Simple and reusable off-the-shelf microfluidic devices for the versatile generation of droplets. Lab Chip 16, 4718 (2016).

    Article  Google Scholar 

  13. A.K. Au, W. Huynh, L.F. Horowitz, and A. Folch: 3D-printed microfluidics. Angew. Chem., Int. Ed. 55, 3862 (2016).

    Article  CAS  Google Scholar 

  14. N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch: The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720 (2016).

    Article  CAS  Google Scholar 

  15. P.J. Kitson, M.H. Rosnes, V. Sans, V. Dragone, and L. Cronin: Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’reactionware devices. Lab Chip 12, 3267 (2012).

    Article  CAS  Google Scholar 

  16. S. Waheed, J.M. Cabot, N.P. Macdonald, T. Lewis, R.M. Guijt, B. Paull, and M.C. Breadmore: 3D printed microfluidic devices: Enablers and barriers. Lab Chip 16, 1993 (2016).

    Article  CAS  Google Scholar 

  17. L.D. Albrecht, S.W. Sawyer, and P. Soman: Developing 3D scaffolds in the field of tissue engineering to treat complex bone defects. 3D Print. Addit. Manuf. 3, 106 (2016).

    Article  Google Scholar 

  18. K.M. Ogden, C. Aslan, N. Ordway, D. Diallo, G. Tillapaugh-Fay, and P. Soman: Factors affecting dimensional accuracy of 3-D printed anatomical structures derived from CT data. J. Digit. Imag. 28, 654 (2015).

    Article  Google Scholar 

  19. L. Yang, S.V. Shridhar, M. Gerwitz, and P. Soman: An in vitro vascular chip using 3D printing-enabled hydrogel casting. Biofabrication 8, 035015 (2016).

    Article  Google Scholar 

  20. S. Sawyer, M. Oest, B. Margulies, and P. Soman: Behavior of encapsulated saos-2 cells within gelatin methacrylate hydrogels. J. Tissue Sci. Eng. 7, 2 (2016).

    Article  Google Scholar 

  21. Y.X. Chen, S. Yang, J. Yan, M-H. Hsieh, L. Weng, J.L. Ouderkirk, M. Krendel, and P. Soman: A novel suspended hydrogel membrane platform for cell culture. J. Nanotechnol. Eng. Med. 6, 021002 (2015).

    Article  Google Scholar 

  22. F. Tamimi, P. Comeau, D. Le Nihouannen, Y. Zhang, D. Bassett, S. Khalili, U. Gbureck, S. Tran, S. Komarova, and J. Barralet: Perfluorodecalin and bone regeneration. Eur. Cell. Mater. 25, 22 (2013).

    Article  CAS  Google Scholar 

  23. V. Chokkalingam, B. Weidenhof, M. Krämer, W.F. Maier, S. Herminghaus, and R. Seemann: Optimized droplet-based microfluidics scheme for sol–gel reactions. Lab Chip 10, 1700 (2010).

    Article  CAS  Google Scholar 

  24. D. Kumar, I. Gerges, M. Tamplenizza, C. Lenardi, N.R. Forsyth, and Y. Liu: Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: A potential injectable cellular product for nucleus pulposus regeneration. Acta Biomater. 10, 3463 (2014).

    Article  CAS  Google Scholar 

  25. C. Chung, J. Mesa, M.A. Randolph, M. Yaremchuk, and J.A. Burdick: Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J. Biomed. Mater. Res., Part A 77, 518 (2006).

    Article  Google Scholar 

  26. Y.X. Chen, B. Cain, and P. Soman: Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties. AIMS Mater. Sci. 4, 363 (2017).

    Article  CAS  Google Scholar 

  27. S.W. Sawyer, P. Dong, S. Venn, A. Ramos, D. Quinn, J.A. Horton, and P. Soman: Conductive gelatin methacrylate-poly(aniline) hydrogel for cell encapsulation. Biomed. Phys. Eng. Express 4, 015005 (2017).

    Article  Google Scholar 

  28. F.M. White: Fluid Mechanics (WCB Ed McGraw-Hill, Boston, 1999).

    Google Scholar 

  29. R.G. Larson: The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).

    Google Scholar 

  30. P. Agarwal, S. Zhao, P. Bielecki, W. Rao, J.K. Choi, Y. Zhao, J. Yu, W. Zhang, and X. He: One-step microfluidic generation of pre-hatching embryo-like core–shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13, 4525 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was partially supported by the Nappi Family Research Award and CMMI 1547095 (National Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Soman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvarnapathaki, S., Ramos, R., Sawyer, S.W. et al. Generation of cell-laden hydrogel microspheres using 3D printing-enabled microfluidics. Journal of Materials Research 33, 2012–2018 (2018). https://doi.org/10.1557/jmr.2018.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.77

Navigation