Skip to main content

Advertisement

Log in

Post-process composition and biological responses of laser sintered PMMA and β-TCP composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

PMMA/β-TCP composites were evaluated to be suitable for laser sintering earlier, but the possible after effects are not known yet. Effects of sintering on the biological nature and the influences of critical compositions and process parameters have not been investigated so far. The current research attempts this, first identifying experimentally the most suitable laser process conditions for the specific grades of PMMA and β-TCP and then subjecting single layer sintered samples to FTIR analysis and in vitro studies involving MTT and ALP assays, alizarin red S tests, and real-time PCR analyses. While the laser interactions are not detrimental, the biological responses are generally positive proving the selective laser sintering of PMMA/β-TCP composites to be a potential approach for specific medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D. Logeart-Avramoglou, F. Anagnostou, R. Bizios, and H. Petite: Engineering bone: Challenges and obstacles. J. Cell Mol. Med. 9, 972–984 (2005).

    Google Scholar 

  2. B. Ben-Nissan: Natural bioceramics: From coral to bone and beyond. Curr. Opin. Solid State Mater. Sci. 7, 283–288 (2003).

    CAS  Google Scholar 

  3. J.M. Lane, E. Tomin, and M.P.G. Bostrom: Biosynthetic bone grafting. Clin. Orthop. Relat. Res. 367, S107–S117 (1999).

    Google Scholar 

  4. R.R. Pelker and G.E. Friedlaender: Biomechanical aspects of bone autografts and allografts. Orthop. Clin. N. Am. 18, 235–239 (1987).

    CAS  Google Scholar 

  5. H.J. Mankin, M.C. Gebhardt, L.C. Jennings, D.S. Springfield, and W.W. Tomford: Long term results of allograft replacement in the management of bone tumors. Clin. Orthop. Relat. Res. 324, 86–97 (1996).

    Google Scholar 

  6. D.M. Strong, G.E. Friedlaender, W.W. Tomford, D.S. Springfield, T.C. Shives, H. Bur-chardt, W.F. Enneking, and H.J. Mankin: Immunologic responses in human recipients of osseous and osteochondral allografts. Clin. Orthop. Relat. Res. 326, 107–114 (1996).

    Google Scholar 

  7. R.J. Simonds, S.D. Holmberg, R.L. Hurwitz, T.R. Coleman, S. Bottenfield, L.J. Conley, S.H. Kohlenberg, K.G. Castro, B.A. Dahan, C.A. Schable, M.A. Rayfield, and M.F. Rogers: Transmission of human-immunodeficiency-virus type-1 from a seronegative organ and tissue donor. N. Engl. J. Med. 326, 726–732 (1992).

    CAS  Google Scholar 

  8. S. Jensen, M. Aarboe, E. Pinholt, E. Hjorting-Hansen, F. Melsen, and I. Ruyter: Tissue reaction and material characteristics of four bone substitues. Int. J. Oral Maxillofac. Implants 11, 55–66 (1996).

    CAS  Google Scholar 

  9. W.R. Moore, S.E. Graves, and G.I. Bain: Synthetic bone graft substitutes. Aust. N. Z. J. Surg. 71, 354–361 (2001).

    CAS  Google Scholar 

  10. F.H. Albee and H.F. Morrison: Studies in bone growth: Triple CaP as a stimulus to osteogenesis. Ann. Surg. 71, 32–39 (1920).

    CAS  Google Scholar 

  11. R.D. Goodridge, K.W. Dalgarno, and D.J. Wood: Indirect selective laser sintering of an appetite-mullite glass-ceramic for potential use in bone replacement applications. Proc. Inst. Mech. Eng., Part H 220, 57–68 (2006).

    CAS  Google Scholar 

  12. A. Asti and L. Gioglio: Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs 37, 187–205 (2014).

    Google Scholar 

  13. I. Vroman and L. Tighzert: Biodegradable polymers. Materials 2, 307–344 (2009).

    CAS  Google Scholar 

  14. A.C. Taş, F. Korkusuz, M. Timuçin, and N. Akkaş: An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J. Mater. Sci.: Mater. Med. 8, 91–96 (1997).

    Google Scholar 

  15. O. Gauthier, E. Goyenvalle, J.M. Bouler, J. Guicheux, P. Pilet, P. Weiss, and G. Daculsi: Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: A comparative study 3 and 8 weeks after implantation in rabbit bone. J. Mater. Sci. Mater. Med. 12, 385–390 (2001).

    CAS  Google Scholar 

  16. R.M. Baxter, D.W. Macdonald, S.M. Kurtz, and M.J. Steinbeck: Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris. J. Bone Jt. Surg. Am. Vol. 95, e751–e759 (2013).

    Google Scholar 

  17. H. Kim, H.M. Kim, J.E. Jang, C.M. Kim, E.Y. Kim, D. Lee, and G. Khang: Osteogenic differentiation of bone marrow stem cell in poly(lactic-co-glycolic acid) scaffold loaded various ratio of hydroxyapatite. Int. J. Stem Cells 6, 67–74 (2013).

    CAS  Google Scholar 

  18. K. Seunarine, N. Gadegaard, M. Tormen, D.O. Meredith, M.O. Riehle, and C.D.W. Wilkinson: 3D polymer scaffolds for tissue engineering. Nanomedicine 1, 281–296 (2006).

    CAS  Google Scholar 

  19. C.M. Agrawal and R.B. Ray: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55, 141–150 (2001).

    CAS  Google Scholar 

  20. D.J. Mooney and R.S. Langer: Engineering biomaterials for tissue engineering. In The Biomedical Engineering Handbook, J.D. Bronzino, ed. (CRC Press, Boca Raton, 1995); pp. 109/1–109/8.

    Google Scholar 

  21. W. Bonfield, M. Wang, and K.E. Tanner: Interfaces in analogue biomaterials. Acta Mater. 46, 2509–2518 (1998).

    CAS  Google Scholar 

  22. R.C. Thomson, A.K. Shung, M.J. Yaszemski, and A.G. Mikos: Polymer scaffold processing. In Principles of Tissue Engineering, R.P. Lanza, R. Langer, and J. Vacanti, eds. (Academic Press, San Diego, 2000); pp. 251–262.

    Google Scholar 

  23. M.S. Widmer and A.G. Mikos: Fabrication of biodegradable polymer scaffolds for tissue engineering. In Frontiers in Tissue Engineering, C.W. Patrick, A.G. Mikos, and L.V. Mcintyre, eds. (Elsevier Sciences, New York, 1998); pp. 107–120.

    Google Scholar 

  24. L.E. Niklason and R. Langer: Prospects for organ and tissue replacement. JAMA, J. Am. Med. Assoc. 285, 573–576 (2001).

    CAS  Google Scholar 

  25. K.F. Leong, C.M. Cheah, and C.K. Chua: Solid freeform fabrication of three- dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24, 2363–2378 (2003).

    CAS  Google Scholar 

  26. C.K. Chua and K.F. Leong: Rapid Prototyping: Principles and Applications in Manu-facturing, 2nd ed. (World Scientific, Singapore, 2003).

    Google Scholar 

  27. M.W. Naing, C.K. Chua, and K.F. Leong: Computer aided tissue engineering scaffold fabrication. In Virtual Prototyping & Bio Manufacturing in Medical Applications (Springer, Boston, MA, 2008); pp. 67–85.

    Google Scholar 

  28. L. Hao, M.M. Savalani, Y. Zhang, K.E. Tanner, and R.A. Harris: Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc. Inst. Mech. Eng., Part H 220, 521–531 (2006).

    CAS  Google Scholar 

  29. M.M. Savalani, L. Hao, and R.A. Harris: Evaluation of CO2 and Nd:YAG lasers for the selective laser sintering of HAPEX®. Proc. IME B J. Eng. Manufact. 220, 171–182 (2006).

    CAS  Google Scholar 

  30. M. Jarcho, J.F. Kay, and K.l. Gumaer: Tissue cellular and subcellular events at a bone ceramic hydroxyapatite interface. J. Bioeng. 1, 79 (1977).

    CAS  Google Scholar 

  31. S.J. Kalita, S. Bose, H.L. Hosick, and A. Bandyopadhyay: Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng., C 23, 611–620 (2003).

    Google Scholar 

  32. B. Duan, M. Wang, W.Y. Zhou, W.L. Cheung, Z.Y. Li, and W.W. Lu: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6, 4495–4505 (2010).

    CAS  Google Scholar 

  33. G. Lewis: Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties. J. Biomed. Mater. Res., Part B 89, 558–574 (2009).

    Google Scholar 

  34. M. Puska, A. Kokkari, T. Närhi, and P. Vallittu: Mechanical properties of oligomer modified acrylic bone cement. Biomaterials 24, 417–425 (2003).

    CAS  Google Scholar 

  35. M. Descamps, O. Richart, P. Hardouin, J.C. Hornez, and A. Leriche: Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural. Ceram. Int. 34, 1131–1137 (2008).

    CAS  Google Scholar 

  36. R. Velu and S. Singamneni: Selective laser sintering of polymer biocomposites based on polymethyl methacrylate. J. Mater. Res., 29, 1883–1892 (2014).

    CAS  Google Scholar 

  37. S. Lohfeld, S. Cahill, V. Barron, P. McHugh, L. Dürselen, L. Kreja, C. Bausewein, and A. Ignatius: Fabrication, mechanical and in vivo performance of polycaprolactone/tricalciumphosphate composite scaffolds. Acta Biomater. 8, 3446–3456 (2012).

    CAS  Google Scholar 

  38. R. Velu and S. Singamneni: Evaluation of the influences of process parameters while selective laser sintering PMMA powders. Proc. Inst. Mech. Eng., Part C 229, 603–613 (2014).

    Google Scholar 

  39. A. Rudin and P. Choi: The Elements of Polymer Science & Engineering (Academic Press, Chicago, 2012).

    Google Scholar 

  40. P. Rantuch, D. Kačíková, and B. Nagypál: Investigation of activation energy of polypropylene composite thermos oxidation by model-free methods. Eur. J. Environ. Saf. Sci. 2, 12–18 (2014).

    CAS  Google Scholar 

  41. D. Jang, T. Nguyen, S.K. Sarkar, and B. Lee: Microwave sintering and in vitro study of defect-free stable porous multi-layered Hap-ZrO2 artificial bone scaffold. Sci. Technol. Adv. Mater. 13, 035009 (9pp) (2012).

    Google Scholar 

  42. C.A. Gregory, W.G. Gunn, A. Peister, and D.J. Prockop: An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).

    CAS  Google Scholar 

  43. R. Ma, S. Tang, H. Tan, W. Lin, Y. Wang, J. Wei, L. Zhao, L. Zhao, and T.T. Preparation: Characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int. J. Nanomed. 9, 3949–3961 (2014).

    Google Scholar 

  44. S. Tsai, H. Liou, C. Lin, K. Kuo, Y. Hung, R. Weng, and F. Hsu: MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix. PLoS One 7, e31200 (2012).

    CAS  Google Scholar 

  45. T.D. Schmittgen and K.J. Livak: Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    CAS  Google Scholar 

  46. H. Yokozeki, T. Hayashi, T. Nakagawa, H. Kurosawa, K. Shibuya, and K. Ioku: Influence of surface microstructure on the reaction of the active ceramics in vivo. J. Mater. Sci. Mater. Med. 9, 381–384 (1998).

    CAS  Google Scholar 

  47. L. Hao, J. Lawrence, and K.S. Chian: On the effects of CO2 laser irradiation on the surface properties of a magnesia partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion. J. Biomater. Appl. 19, 81–105 (2004).

    CAS  Google Scholar 

  48. V.L. Tsang and S.N. Bhatia: Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56, 1635–1647 (2004).

    Google Scholar 

  49. G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang: Preparation and characterization of mesoporous zirconia made by using a poly(methyl methacrylate) template. Nanoscale Res. Lett. 3, 118 (2008).

    Google Scholar 

  50. L. Di Silvio, M.J. Dalby, and W. Bonfield: In vitro response of osteoblasts to hydroxyapatite-reinforced polyethylene composites. J. Mater. Sci. Mater. Med. 9, 845–848 (1998).

    Google Scholar 

  51. K.B. Muhammad, W.A. Abas, K.H. Kim, B. Pingguan-Murphy, N.M. Zain, and H. Akram: In vitro comparative study of white and dark polycaprolactone trifumarate in situ cross-linkable scaffolds seeded with rat bone marrow stromal cells. Clinics 67, 629–637 (2012).

    Google Scholar 

  52. S.S. Kim, M.S. Park, O. Jeon, C.Y. Choi, and B.S. Kim: Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27, 399–409 (2006).

    Google Scholar 

  53. L. Sun, B. Gan, Y. Fan, F. Zhuang, and Q. Hu: The proliferation and gene expression in MC3T3-E1 under simulated microgravity. In Complex Medical Engineering, 2007. CME 2007. IEEE/ICME International Conference (IEEE, Beijing, China, 2007); pp. 1803–1806.

    Google Scholar 

  54. S.B. Sulaiman, T.K. Keong, C.H. Cheng, A.B. Saim, and R.B.H. Idrus: Tricalcium phosphate/hydroxyapatite (TCP–HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 137, 1093–1101 (2013).

    Google Scholar 

  55. M. Gumusderelioglu, E.O. Tuncay, G. Kaynak, T.T. Demirtas, S.T. Aydin, and S.S. Hakki: Encapsulated boron as an osteconductive agent for bone scaffolds. J. Trace Elem. Med. Biol. 31, 120–128 (2015).

    CAS  Google Scholar 

  56. S. Yamano, T.Y. Lin, J. Dai, K. Fabella, and A.M. Moursi: Bioactive collagen membrane as a carrier for sustained release of PDGF. J. Tissue Sci. Eng. 2, 110 (2011).

    Google Scholar 

  57. L. Xu, K. Lv, W. Zhang, X. Zhang, X. Jiang, and F. Zhang: The healing of critical-size calvarial bone defects in rat with rhPDGF-BB, BMSCs, and β-TCP scaffolds. J. Mater. Sci. Mater. Med. 23, 1073–1084 (2012).

    CAS  Google Scholar 

  58. A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari: Development and spectral characterization of poly(methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater. Artif. Organs 18, 41–45 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Singamneni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu, R., Kamarajan, B.P., Ananthasubramanian, M. et al. Post-process composition and biological responses of laser sintered PMMA and β-TCP composites. Journal of Materials Research 33, 1987–1998 (2018). https://doi.org/10.1557/jmr.2018.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.76

Navigation