Skip to main content
Log in

Engineering star-shaped lactic acid oligomers to develop novel functional adhesives

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Direct polycondensation of L-lactic acid with a comonomer allows tailoring the properties of the product from the very first step. The viscous L-lactic acid co-oligomers with star-shaped architectures obtained were modified with three different acrylate monomers. Regardless the functionalization agent, UV curing was fast and all materials were cell compatible and promoted cell adhesion. The physical properties of the three star-shaped films exhibited a consistent trend as swelling capacity, hydrolytic instability, and gel content decreased simultaneously. A higher network density increased crosslinking degree and gel content among the films with an isocyanate group. The methacrylic end group functionalized material, lowest molecular weight, consistently exhibited the higher hydrolytic instability. Comparison of physical properties of these films with the corresponding linear materials reported previously confirmed the influence of precursor molecular architecture on the final material. The methodology developed herein is prone to scale-up and lead to the industrial production of new bioadhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Donkerwolcke, F. Burny, and D. Muster: Tissues and bone adhesives—Historical aspects. Biomaterials 19, 1461 (1998).

    Article  CAS  Google Scholar 

  2. A. Duarte, J. Coelho, J. Bordado, M. Cidade, and M. Gil: Surgical adhesives: Systematic review of the main types and development forecast. Prog. Polym. Sci. 37, 1031 (2012).

    Article  CAS  Google Scholar 

  3. M. Mehdizadeh and J. Yang: Design strategies and applications of tissue bioadhesives. Macromol. Biosci. 13, 271 (2013).

    Article  CAS  Google Scholar 

  4. P.J. Bouten, M. Zonjee, J. Bender, S.T. Yauw, H. van Goor, J.C. van Hest, and R. Hoogenboom: The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39, 1375 (2014).

    Article  CAS  Google Scholar 

  5. J. Mönkäre, R. Hakala, M. Vlasova, A. Huotari, M. Kilpeläinen, A. Kiviniemi, V. Meretoja, K. Herzig, H. Korhonen, and J. Seppälä: Biocompatible photocrosslinked poly(ester anhydride) based on functionalized poly(ε-caprolactone) prepolymer shows surface erosion controlled drug release in vitro and in vivo. J. Controlled Release 146, 349 (2010).

    Article  Google Scholar 

  6. J.L. Ifkovits and J.A. Burdick: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369 (2007).

    Article  CAS  Google Scholar 

  7. J. Seppälä, H. Korhonen, R. Hakala, and M. Malin: Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications. Macromol. Biosci. 11, 1647 (2011).

    Article  Google Scholar 

  8. R.S. Benson: Use of radiation in biomaterials science. Nucl. Instrum. Methods Phys. Res., Sect. B 191, 752 (2002).

    Article  CAS  Google Scholar 

  9. C. Decker: Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun. 23, 1067 (2002).

    Article  CAS  Google Scholar 

  10. B. Balakrishnan, M. Mohanty, P. Umashankar, and A. Jayakrishnan: Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26, 6335 (2005).

    Article  CAS  Google Scholar 

  11. W. Dong-An, S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D.H. Fairbrother, B. Cascio, and J.H. Elisseeff: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater. 6, 385 (2007).

    Article  Google Scholar 

  12. A. Serrero, S. Trombotto, Y. Bayon, P. Gravagna, S. Montanari, and L. David: Polysaccharide-based adhesive for biomedical applications: Correlation between rheological behavior and adhesion. Biomacromolecules 12, 1556 (2011).

    Article  CAS  Google Scholar 

  13. P. Ferreira, J. Coelho, and M. Gil: Development of a new photocrosslinkable biodegradable bioadhesive. Int. J. Pharm. 352, 172 (2008).

    Article  CAS  Google Scholar 

  14. C.E. Brubaker and P.B. Messersmith: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326 (2011).

    Article  CAS  Google Scholar 

  15. P. Kord Forooshani and B.P. Lee: Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci., Part A: Polym. Chem. 55, 9 (2017).

    Article  CAS  Google Scholar 

  16. L. Xiao, B. Wang, G. Yang, and M. Gauthier: Poly(lactic acid)-based biomaterials: Synthesis, modification and applications. In Biomedical Science, Engineering and Technology, D.N. Ghista, ed. (InTech, Rijeka, Croatia, 2012); p. 248.

    Google Scholar 

  17. X. Zheng, Y. Wang, Z. Lan, Y. Lyu, G. Feng, Y. Zhang, S. Tagusari, E. Kislauskis, M.P. Robich, and S. McCarthy: Improved biocompatibility of poly(lactic-co-glycolic acid) and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications. J. Biomed. Nanotechnol. 10, 900 (2014).

    Article  CAS  Google Scholar 

  18. D. Marques, J. Santos, P. Ferreira, T. Correia, I. Correia, M. Gil, and C. Baptista: Photocurable bioadhesive based on lactic acid. Mater. Sci. Eng. C 58, 601 (2016).

    Article  CAS  Google Scholar 

  19. D.S. Marques, J.M. Santos, P. Ferreira, T.R. Correia, I.J. Correia, M.H. Gil, and C.M. Baptista: Functionalization and photocuring of an L-lactic acid macromer for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 65, 497 (2016).

    Article  CAS  Google Scholar 

  20. J. Santos, D. Marques, P. Alves, T. Correia, I. Correia, C.M. Baptista, and P. Ferreira: Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives. React. Funct. Polym. 94, 43 (2015).

    Article  CAS  Google Scholar 

  21. A.S. Karikari, B.D. Mather, and T.E. Long: Association of star-shaped poly(D,L-lactide)s containing nucleobase multiple hydrogen bonding. Biomacromolecules 8, 302 (2007).

    Article  CAS  Google Scholar 

  22. R.A. Hakala, H. Korhonen, and J.V. Seppälä: Hydrolysis behaviour of crosslinked poly(ester anhydride) networks prepared from functionalised poly(ε-caprolactone) precursors. React. Funct. Polym. 73, 11 (2013).

    Article  CAS  Google Scholar 

  23. A.O. Helminen, H. Korhonen, and J.V. Seppälä: Structure modification and crosslinking of methacrylated polylactide oligomers. J. Appl. Polym. Sci. 86, 3616 (2002).

    Article  CAS  Google Scholar 

  24. S. Marrian: The chemical reactions of pentaerythritol and its derivatives. Chem. Rev. 43, 149 (1948).

    Article  CAS  Google Scholar 

  25. D. Åkesson, M. Skrifvars, J. Seppälä, M. Turunen, A. Martinelli, and A. Matic: Synthesis and characterization of a lactic acid-based thermoset resin suitable for structural composites and coatings. J. Appl. Polym. Sci. 115, 480 (2010).

    Article  Google Scholar 

  26. A.S. Karikari, W.F. Edwards, J.B. Mecham, and T.E. Long: Influence of peripheral hydrogen bonding on the mechanical properties of photo-cross-linked star-shaped poly(D,L-lactide) networks. Biomacromolecules 6, 2866 (2005).

    Article  CAS  Google Scholar 

  27. A. Vieira, P. Ferreira, J. Coelho, and M. Gil: Photocrosslinkable starch-based polymers for ophthalmologic drug delivery. Int. J. Biol. Macromol. 43, 325 (2008).

    Article  CAS  Google Scholar 

  28. J. Almeida, P. Ferreira, A. Lopes, and M. Gil: Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int. J. Biol. Macromol. 49, 948 (2011).

    Article  CAS  Google Scholar 

  29. S. Dinescu, B. Galateanu, M. Albu, A. Cimpean, A. Dinischiotu, and M. Costache: Sericin enhances the bioperformance of collagen-based matrices preseeded with human-adipose derived stem cells (hADSCs). Int. J. Mol. Sci. 14, 1870 (2013).

    Article  CAS  Google Scholar 

  30. S.P. Miguel, M.P. Ribeiro, H. Brancal, P. Coutinho, and I.J. Correia: Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydr. Polym. 111, 366 (2014).

    Article  CAS  Google Scholar 

  31. H.K. Makadia and S.J. Siegel: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377 (2011).

    Article  CAS  Google Scholar 

  32. X. Ma, S. Oyamada, T. Wu, M.P. Robich, H. Wu, X. Wang, B. Buchholz, S. McCarthy, C.F. Bianchi, and F.W. Sellke: In vitro and in vivo degradation of poly(D,L-lactide-co-glycolide)/amorphous calcium phosphate copolymer coated on metal stents. J. Biomed. Mater. Res., Part A 96, 632 (2011).

    Article  Google Scholar 

  33. N. Mason, C. Miles, and R. Sparks: Hydrolytic degradation of poly DL-(Lactide). In Biomedical and Dental Applications of Polymers, Vol. 14, C.G. Gebelein and F.F. Koblitz, eds. (Polymer Science and Technology, Plenum, New York, 1981); p. 279.

    Chapter  Google Scholar 

  34. E. Vidovic: The development of bioabsorbable hydrogels on the basis of polyester grafted poly(vinyl alcohol). Ph.D. thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany, 2006.

    Google Scholar 

  35. S.I. Fraley, Y. Feng, R. Krishnamurthy, D-H. Kim, A. Celedon, G.D. Longmore, and D. Wirtz: A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The financial support from FCT for Grant No. SFRH/BD/42245/2007 and SFRH/BPD/86338/2012 is gratefully acknowledged. Sónia P. Miguel acknowledges a Ph.D. fellowship from FCT (SFRH/BD/109563/2015). The authors would also like to thank 73100, Lda. for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina M. S. G. Baptista.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.M.C., Travassos, D.R.S., Ferreira, P. et al. Engineering star-shaped lactic acid oligomers to develop novel functional adhesives. Journal of Materials Research 33, 1463–1474 (2018). https://doi.org/10.1557/jmr.2018.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.73

Navigation