Abstract
We present classical potential molecular dynamics simulations of nanoporous gold (np-Au) impacted by a spherical indenter. The atomic structure was generated using a phase field model as a template. In agreement with previous experiments, we observe densification in the region under the indenter. The hardness values obtained from our simulations exhibit a transition from an initially perfect-plastic plateau to hardening behavior in the later stages of indentation. This transition occurs when the relative density beneath the indenter exceeds ∼0.9. Hardness values obtained from the nanoindentation simulations reach 0.6 GPa, due to the densification of the material under the indenter. Elevated dislocation densities are observed in the densified region. The mechanism of pore collapse in the densified layer under the indenter is seen to switch from uniaxial to triaxial, consistent with a change in deformation mechanism from one based on shearing of individual ligaments in np-Au to one involving dislocation-mediated plasticity around voids in a Au single crystal undergoing uniaxial compression.
Similar content being viewed by others
References
J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, and J.H. Satcher: Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 4 (2005).
J. Weissmuller, R.C. Newman, H.J. Jin, A.M. Hodge, and J.W. Kysar: Nanoporous metals by alloy corrosion: Formation and mechanical properties. MRS Bull. 34, 577 (2009).
N. Mameka, J. Markmann, and J. Weissmüller: On the impact of capillarity for strength at the nanoscale. Nat. Commun. 8, 1976 (2017).
N. Mameka, K. Wang, J. Markmann, E.T. Lilleodden, and J. Weissmüller: Nanoporous gold—Testing macro-scale samples to probe small-scale mechanical behavior. Mater. Res. Lett. 4, 27 (2016).
I. McCue, S. Ryan, K. Hemker, X.D. Xu, N. Li, M.W. Chen, and J. Erlebacher: Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv. Eng. Mater. 18, 46 (2016).
N. Miyazawa, J. Ishimoto, M. Hakamada, and M. Mabuchi: Mechanical characterization of nanoporous Au modified with self-assembled monolayers. Appl. Phys. Lett. 109, 261905 (2016).
B. Roschning and N. Huber: Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength. J. Mech. Phys. Solids 92, 55 (2016).
A.M. Hodge, J.R. Hayes, J.A. Caro, J. Biener, and A.V. Hamza: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).
C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).
C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmuller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).
C.J. Ruestes, D. Farkas, A. Caro, and E.M. Bringa: Hardening under compression in Au foams. Acta Mater. 108, 1 (2016).
T.J. Balk, C. Eberl, Y. Sun, K.J. Hemker, and D.S. Gianola: Tensile and compressive microspecimen testing of bulk nanoporous gold. JOM 61, 26 (2009).
M. Hakamada and M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).
A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, and A.V. Hamza: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).
H.J. Jin, D. Kramer, Y. Ivanisenko, and J. Weissmuller: Macroscopically strong nanoporous Pt prepared by dealloying. Adv. Eng. Mater. 9, 849 (2007).
A. Mathur and J. Erlebacher: Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910 (2007).
R. Liu and A. Antoniou: A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61, 2390 (2013).
X-Y. Sun, G-K. Xu, X. Li, X-Q. Feng, and H. Gao: Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113, 023505 (2013).
L.Z. Liu, X.L. Ye, and H.J. Jin: Interpreting anomalous low-strength and low-stiffness of nanoporous gold: Quantification of network connectivity. Acta Mater. 118, 77 (2016).
R. Liu, J. Gruber, D. Bhattacharyya, G.J. Tucker, and A. Antoniou: Mechanical properties of nanocrystalline nanoporous platinum. Acta Mater. 103, 624 (2016).
L. Luhrs, C. Soyarslan, J. Markmann, S. Bargmann, and J. Weissmuller: Elastic and plastic Poisson’s ratios of nanoporous gold. Scr. Mater. 110, 65 (2016).
K.R. Mangipudi, E. Epler, and C.A. Volkert: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115 (2016).
L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1997).
L.J. Gibson and M.F. Ashby: The mechanics of three-dimensional cellular materials. Proc. R. Soc. London, Ser. A 382, 43 (1982).
B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).
C.R. Weinberger and W. Cai: Plasticity of metal nanowires. J. Mater. Chem. 22, 3277 (2012).
H. Liang, M. Upmanyu, and H. Huang: Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B 71, 241403 (2005).
R. Dou and B. Derby: Deformation mechanisms in gold nanowires and nanoporous gold. Philos. Mag. 91, 1070 (2011).
J.K. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643 (2006).
J.K. Diao, K. Gall, and M.L. Dunn: Atomistic simulation of the structure and elastic properties of gold nanowires. J. Mech. Phys. Solids 52, 1935 (2004).
B. Hyde, H.D. Espinosa, and D. Farkas: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 57, 62 (2005).
J.F. Rodriguez-Nieva, C.J. Ruestes, Y. Tang, and E.M. Bringa: Atomistic simulation of the mechanical properties of nanoporous gold. Acta Mater. 80, 67 (2014).
D.A. Crowson, D. Farkas, and S.G. Corcoran: Geometric relaxation of nanoporous metals: The role of surface relaxation. Scr. Mater. 56, 919 (2007).
D.A. Crowson, D. Farkas, and S.G. Corcoran: Mechanical stability of nanoporous metals with small ligament sizes. Scr. Mater. 61, 497 (2009).
K. Kolluri and M.J. Demkowicz: Coarsening by network restructuring in model nanoporous gold. Acta Mater. 59, 7645 (2011).
B.N.D. Ngo, B. Roschning, K. Albe, J. Weissmuller, and J. Markmann: On the origin of the anomalous compliance of dealloying-derived nanoporous gold. Scr. Mater. 130, 74 (2017).
B-N.D. Ngô, A. Stukowski, N. Mameka, J. Markmann, K. Albe, and J. Weissmüller: Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144 (2015).
J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).
D. Farkas, A. Caro, E. Bringa, and D. Crowson: Mechanical response of nanoporous gold. Acta Mater. 61, 3249 (2013).
J.W. Cahn and J.E. Hilliard: Free energy of a nonuniform system. III. Nucleation in a 2-component incompressible fluid. J. Chem. Phys. 31, 688 (1959).
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
S. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).
M.S. Daw and M.I. Baskes: Embedded-atom method—Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).
S.M. Foiles, M.I. Baskes, and M.S. Daw: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).
D. Farkas: Atomistic simulations of metallic microstructures. Curr. Opin. Solid State Mater. Sci. 17, 284 (2013).
A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
A. Stukowski and K. Albe: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).
C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).
J. Stuckner, K. Frei, I. McCue, M.J. Demkowicz, and M. Murayama: AQUAMI: An open source Python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Comput. Mater. Sci. 139, 320 (2017).
N. Badwe, X.Y. Chen, and K. Sieradzki: Mechanical properties of nanoporous gold in tension. Acta Mater. 129, 251 (2017).
J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).
E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay: On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001).
H.J. Jin, L. Kurmanaeva, J. Schmauch, H. Rosner, Y. Ivanisenko, and J. Weissmuller: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 2665 (2009).
W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).
U.F. Kocks and H. Mecking: Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 48, 171 (2003).
M.M. Carroll and A.C. Holt: Static and dynamic pore—Collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626 (1972).
L.P. Davila, P. Erhart, E.M. Bringa, M.A. Meyers, V.A. Lubarda, M.S. Schneider, R. Becker, and M. Kumar: Atomistic modeling of shock-induced void collapse in copper. Appl. Phys. Lett. 86, 1619021 (2005).
Y. Tang, E. Bringa, B. Remington, and M. Meyers: Growth and collapse of nanovoids in tantalum monocrystals. Acta Mater. 59, 1354 (2011).
V.V. Bulatov, W.G. Wolfer, and M. Kumar: Shear impossibility: Comments on “Void growth by dislocation emission” and Void growth in metals: Atomistic calculations. Scr. Mater. 63, 144 (2010).
S. Torquato: Random Heterogeneous Materials (Springer, New York, NY, 2002).
C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
R. Maaß and J.F. Löffler: Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353–2368 (2015).
ACKNOWLEDGMENT
This work was funded by the National Science Foundation, Division of Materials Research, DMREF program Grant No. 1533969.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Farkas, D., Stuckner, J., Umbel, R. et al. Indentation response of nanoporous gold from atomistic simulations. Journal of Materials Research 33, 1382–1390 (2018). https://doi.org/10.1557/jmr.2018.72
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2018.72