Skip to main content

Advertisement

Log in

Piezoelectric polymer thin films with architected cuts

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2018

This article has been updated

Abstract

Introducing architected cuts is an attractive and simple approach to tune mechanical behaviors of planar materials like thin films for desirable or enhanced mechanical performance. However, little has been studied on the effects of architected cuts on functional materials like piezoelectric materials. We investigated how architected cut patterns affect mechanical and piezoelectric properties of polyvinylidene fluoride thin films by numerical, experimental, and analytical studies. Our results show that thin films with architected cuts can provide desired mechanical features like enhanced compliance, stretchability, and controllable Poisson’s ratio and resonance frequency, while maintaining piezoelectric performance under static loadings. Moreover, we could observe maximum ∼30% improvement in piezoelectric conversion efficiency under dynamic loadings and harvest energy from low frequency (<100 Hz) mechanical signals or low velocity (<5 m/s) winds, which are commonly existing in ambient environment. Using architected cuts doesn’t require changing the material or overall dimensions, making it attractive for applications in self-powered devices with design constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

References

  1. L. Valdevit, A.J. Jacobsen, J.R. Greer, and W.B. Carter: Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, 1–20 (2011).

    Article  CAS  Google Scholar 

  2. R. Lakes: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987).

    Article  CAS  Google Scholar 

  3. J.B. Choi and R.S. Lakes: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract. 80, 73–83 (1996).

    Article  Google Scholar 

  4. A. Lowe and R.S. Lakes: Negative Poisson’s ratio foam as seat cushion material. Cell. Polym. 19, 157–167 (2000).

    Google Scholar 

  5. E.O. Martz, R.S. Lakes, V.K. Goel, and J.B. Park: Design of an artificial intervertebral disc exhibiting a negative Poisson’s ratio. Cell. Polym. 24, 127–138 (2005).

    Article  CAS  Google Scholar 

  6. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).

    Article  CAS  Google Scholar 

  7. M. Osanov and J.K. Guest: Topology optimization for architected materials design. Annu. Rev. Mater. Res. 46, 211–233 (2016).

    Article  CAS  Google Scholar 

  8. T.A. Schaedler and W.B. Carter: Architected cellular materials. Annu. Rev. Mater. Res. 46, 187–210 (2016).

    Article  CAS  Google Scholar 

  9. K. Bertoldi: Harnessing instabilities to design tunable architected cellular materials. Annu. Rev. Mater. Res. 47, 51–61 (2017).

    Article  CAS  Google Scholar 

  10. R.S. Lakes: Negative-Poisson’s-ratio materials: Auxetic solids. Annu. Rev. Mater. Res. 47, 63–81 (2017).

    Article  CAS  Google Scholar 

  11. J.T.B. Overvelde, J.C. Weaver, C. Hoberman, and K. Bertoldi: Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    Article  CAS  Google Scholar 

  12. P.M. Reis, H.M. Jaeger, and M. van Hecke: Designer matter: A perspective. Extreme Mech. Lett. 5, 25–29 (2015).

    Article  Google Scholar 

  13. K. Bertoldi, P.M. Reis, S. Willshaw, and T. Mullin: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010).

    Article  CAS  Google Scholar 

  14. K. Kim, J. Ju, and D.M. Kim: Porous materials with high negative Poisson’s ratios—A mechanism based material design. Smart Mater. Struct. 22, 084007 (2013).

    Article  Google Scholar 

  15. K. Virk, A. Monti, T. Trehard, M. Marsh, K. Hazra, K. Boba, C.D.L. Remillat, F. Scarpa, and I.R. Farrow: SILICOMB PEEK kirigami cellular structures: Mechanical response and energy dissipation through zero and negative stiffness. Smart Mater. Struct. 22, 084014 (2013).

    Article  Google Scholar 

  16. M. Taylor, L. Francesconi, M. Gerendas, A. Shanian, C. Carson, and K. Bertoldi: Low porosity metallic periodic structures with negative Poisson’s ratio. Adv. Mater. 26, 2365–2370 (2014).

    Article  CAS  Google Scholar 

  17. Y. Jiang and Y. Li: 3D printed chiral cellular solids with amplified auxetic effects due to elevated internal rotation. Adv. Eng. Mater. 19, 1600609 (2017).

    Article  CAS  Google Scholar 

  18. Y. Cho, J.H. Shin, A. Costa, T.A. Kim, V. Kunin, J. Li, S.Y. Lee, S. Yang, H.N. Han, I.S. Choi, and D.J. Srolovitz: Engineering the shape and structure of materials by fractal cut. Proc. Natl. Acad. Sci. U. S. A. 111, 17390–17395 (2014).

    Article  CAS  Google Scholar 

  19. S. Shan, S.H. Kang, J.R. Raney, P. Wang, L. Fang, F. Candido, J.A. Lewis, and K. Bertoldi: Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).

    Article  CAS  Google Scholar 

  20. D. Restrepo, N.D. Mankame, and P.D. Zavattieri: Phase transforming cellular materials. Extreme Mech. Lett. 4, 52–60 (2015).

    Article  Google Scholar 

  21. J. Liu, T. Gu, S. Shan, S.H. Kang, J.C. Weaver, and K. Bertoldi: Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater. 28, 6619–6624 (2016).

    Article  CAS  Google Scholar 

  22. S.C. Shan, S.H. Kang, P. Wang, C.Y. Qu, S. Shian, E.R. Chen, and K. Bertoldi: Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 4935–4942 (2014).

    Article  CAS  Google Scholar 

  23. F. Javid, P. Wang, A. Shanian, and K. Bertoldi: Architected materials with ultra-low porosity for vibration control. Adv. Mater. 28, 5943–5948 (2016).

    Article  CAS  Google Scholar 

  24. J.R. Raney, N. Nadkarni, C. Daraio, D.M. Kochmann, J.A. Lewis, and K. Bertoldi: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. U. S. A. 113, 9722–9727 (2016).

    Article  CAS  Google Scholar 

  25. S. Shan, S.H. Kang, Z. Zhao, L. Fang, and K. Bertoldi: Design of planar isotropic negative Poisson’s ratio structures. Extreme Mech. Lett. 4, 96–102 (2015).

    Article  Google Scholar 

  26. Y.C. Tang, G.J. Lin, L. Han, S.G. Qiu, S. Yang, and J. Yin: Design of hierarchically cut hinges for highly stretchable and reconfigurable metamaterials with enhanced strength. Adv. Mater. 27, 7181–7190 (2015).

    Article  CAS  Google Scholar 

  27. H.A. Sodano, D.J. Inman, and G. Park: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36, 197–206 (2004).

    Article  Google Scholar 

  28. A. Toprak and O. Tigli: Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1, 031104 (2014).

    Article  CAS  Google Scholar 

  29. A.H. Rajabi, M. Jaffe, and T.L. Arinzeh: Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 24, 12–23 (2015).

    Article  CAS  Google Scholar 

  30. G-T. Hwang, H. Park, J-H. Lee, S. Oh, K-I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, S-G. Lee, B. Joung, and K.J. Lee: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880–4887 (2014).

    Article  CAS  Google Scholar 

  31. K.Y. Lee, M.K. Gupta, and S.W. Kim: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14, 139–160 (2015).

    Article  CAS  Google Scholar 

  32. G.T. Hwang, Y. Kim, J.H. Lee, S. Oh, C.K. Jeong, D.Y. Park, J. Ryu, H. Kwon, S.G. Lee, B. Joung, D. Kim, and K.J. Lee: Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energ. Environ. Sci. 8, 2677–2684 (2015).

    Article  CAS  Google Scholar 

  33. F.R. Fan, W. Tang, and Z.L. Wang: Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28, 4283–4305 (2016).

    Article  CAS  Google Scholar 

  34. X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, and Z.L. Wang: Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11, 1728–1735 (2017).

    Article  CAS  Google Scholar 

  35. S. Orrego, K. Shoele, A. Ruas, K. Doran, B. Caggiano, R. Mittal, and S.H. Kang: Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 194, 212–222 (2017).

    Article  Google Scholar 

  36. W.A. Smith: Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson’s ratio. Proc. IEEE 1, 661–666 (1991).

    Google Scholar 

  37. S. Iyer, M. Alkhader, and T.A. Venkatesh: Electromechanical behavior of auxetic piezoelectric cellular solids. Scr. Mater. 99, 65–68 (2015).

    Article  CAS  Google Scholar 

  38. Q. Li, Y. Kuang, and M.L. Zhu: Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv. 7, 015104 (2017).

    Article  Google Scholar 

  39. Z. Qi, D.K. Campbell, and H.S. Park: Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B 90, 245437 (2014).

    Article  CAS  Google Scholar 

  40. M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller and P.L. McEuen: Graphene kirigami. Nature 524, 204–207 (2015).

    Article  CAS  Google Scholar 

  41. J.N. Grima and K.E. Evans: Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19, 1563–1565 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the start-up fund from the Whiting School of Engineering at Johns Hopkins University and the scholarship by China Scholarship Council (CSC) (J. Li). We would like to thank Dr. Shu Guo and Dr. Ugur Erturun (Johns Hopkins University) for their helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hoon Kang.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Li, J., Zhu, Z. et al. Piezoelectric polymer thin films with architected cuts. Journal of Materials Research 33, 330–342 (2018). https://doi.org/10.1557/jmr.2018.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.6

Navigation