Skip to main content
Log in

Finite element analysis modeling of high voltage and frequency 3-phase solid state transformers enabled by metal amorphous nanocomposites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We review the materials paradigm for metal amorphous nanocomposite (MANC) soft magnetic materials to showcase in solid state transformers (SSTs). We report 2D finite element analysis (FEA) of 3-phase SSTs operating at 50 Hz–10 kHz frequencies. We benchmark materials in designs to control high frequency losses and achieve higher power densities. FEA models are solved in the time domain for line frequencies of 50 Hz–10 kHz and 100 KW output power for the first 4 cycles. Transformer topologies are coupled to a power analysis using a Steinmetz parameterization of magnetic losses capturing induction and field scaling for transformer grade Si steel as compared to Metglas, Ferrite, FINEMET, Co- and FeNi-based MANCs. Recently discovered FeNi-based MANCs allow smaller transformers at equivalent power as compared to Si steel, Metglas, and Co-based MANCs. Fe-rich and non-Co containing MANCs also offer economies based on lower raw materials costs compared with Co-based MANCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. W. McMurray: Power converter circuits having a high frequency link. U.S. Patent No. 3517300, June 23, 1970.

  2. S. Bhattacharya: Transforming the transformer. IEEE Spectrum 54, 38–43 (2017).

    Google Scholar 

  3. K. Mainali, A. Tripathi, S. Madhusoodhanan, A. Kadavelugu, D. Patel, S. Hazra, K. Hatua, and S. Bhattacharya: A transformerless intelligent power substation: A three-phase SST enabled by a 15-kV SiC IGBT. IEEE Power Electron. Mag. 2, 31–43 (2015).

    Google Scholar 

  4. S. Madhusoodhanan, A. Tripathi, D. Patel, K. Mainali, A. Kadavelugu, S. Hazra, S. Bhattacharya, and K. Hatua: Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans. Ind. Appl. 51, 3343–3360 (2015).

    CAS  Google Scholar 

  5. A.Q. Huang, G. Zhu, L. Wang, and L. Zhang: 15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers. CPSS Trans. Power Electron. Appl. 2, 118–130 (2017).

    Google Scholar 

  6. A.Q. Huang: Medium-voltage solid state transformer technology for a smarter and resilient grid. IEEE Ind. Electron. Mag. 10, 29–42 (2016).

    Google Scholar 

  7. A.Q. Huang, M.L. Crow, G.T. Heydt, J.P. Zheng, and S.J. Dale: The future renewable electric energy delivery and management (FREEDM) system. The energy internet. Proc. IEEE 99, 133–148 (2011).

    Google Scholar 

  8. X. She, A.Q. Huang, and R. Burgos: Review of solid-state-transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 1, 186–198 (2013).

    Google Scholar 

  9. J.E. Huber and J.W. Kolar: Solid-state transformers on the origins and evolution of key concepts. IEEE Ind. Electron. Mag. 10, 19–28 (2016).

    Google Scholar 

  10. W.M.T. Mclyman: Transformer and Inductor Design Handbook, 3rd ed. (CRC Press, Boca Raton, Fl, 2004).

    Google Scholar 

  11. M. Ferch: Nanocrystalline core materials for modern power electronic designs [Internet]. MAGNETEC GmbH, Langenselbold, Germany, 2003. Available at: http://www.magnetec.de/fileadmin/pdf/np_powerelectronic_e.pdf.

  12. M.E. McHenry and D.E. Laughlin: Magnetic properties of metals and alloys. Physical Metallurgy, 5th ed, edited by D.E. Laughlin and K. Hono (Elsevier B.V., New York, New York, 2015).

    Google Scholar 

  13. A. Leary, V. Keylin, A. Devaraj, V. DeGeorge, P. Ohodnicki, and M.E. McHenry: Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications. J. Mater. Res. 23, 1 (2016).

    Google Scholar 

  14. S.J. Kernion, K.J. Miller, S. Shen, V. Keylin, J. Huth, and M.E. McHenry: High induction, low loss FeCo-based nanocomposite alloys with reduced metalloid content. IEEE Trans. Magn. 47, 3452 (2011).

    CAS  Google Scholar 

  15. M. Daniil, P.R. Ohodnicki, M.E. McHenry, and M.A. Willard: Shear band formation and fracture behavior of nanocrystalline (Co, Fe)-based alloys. Philos. Mag.90, 1547–1565 (2010).

  16. P.R. Ohodnicki, J. Long, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth: Composition dependence of field induced anisotropy in ferromagnetic (Co, Fe)89Zr7B4 and (Co, Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).

    Google Scholar 

  17. A.M. Leary, P.R. Ohodnicki, and M.E. McHenry: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772–781 (2012)s.

    Google Scholar 

  18. N. Aronhime, V. DeGeorge, V. Keylin, P. Ohodnicki, and M.E. McHenry: The effects of strain-annealing on tuning permeability and lowering losses in Fe–Ni based metal amorphous nanocomposites. J. Mater. 69, 11 (2017).

    Google Scholar 

  19. V. DeGeorge, E. Zhoglin, V. Keylin, and M.E. McHenry: Time temperature transformation (TTT) diagram for secondary crystal products of Co-based Co–Fe–B–Si–Nb–Mn soft magnetic nanocomposite. J. Appl. Phys. 117, 17A329 (2015).

    Google Scholar 

  20. N. Aronhime, E. Zhoglin, V. Keylin, X. Jin, P. Ohodnicki, and M.E. McHenry: Magnetic properties and crystallization kinetics of (Fe100−xNix)80Nb4Si2B14 metal amorphous nanocomposites. Scripta Mater. 120C, 133–137 (2017).

    Google Scholar 

  21. M.E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, A. Hsiao, V.R.V. Ramanan, and D.E. Laughlin: The kinetics of nanocrystallization and implications for properties in FINEMET, NANOPERM, and HITPERM nanocomposite magnetic materials. Scripta Mater. 48, 881–887 (2003).

    CAS  Google Scholar 

  22. W.A. Johnson and R.F. Mehl: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416–442 (1939).

    Google Scholar 

  23. M.J. Avrami: Kinetics of Phase Change. I General Theory. J. Chem. Phys. 7, 1103 (1939).

    CAS  Google Scholar 

  24. M.J. Avrami: Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 8, 212 (1940).

    CAS  Google Scholar 

  25. M.J. Avrami: Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 9, 177 (1941).

    CAS  Google Scholar 

  26. A.N. Kolmogorov: Statistical theory of nucleation processes. Bull. Acad. Sci. USSR, Phys. Ser. 3, 355 (1937).

    Google Scholar 

  27. J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, and H.N. Jones: On the formation of nanocrystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9. Acta Mater. 46, 1861 (1998).

    CAS  Google Scholar 

  28. V.R.V. Ramanan and G.E. Fish: Crystallization kinetics in Fe–B–Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).

    CAS  Google Scholar 

  29. P.R. Ohodnicki, D.E. Laughlin, M.E. McHenry, and M. Widom: Application of classical nucleation theory to phase selection and composition of nucleated nanocrystals during crystallization of Co-rich (Co,Fe)-based amorphous precursors. Acta Mater. 58, 4804–4813 (2010).

    CAS  Google Scholar 

  30. A.M. Leary, M.S. Lucas, P.R. Ohodnicki, S.J. Kernion, and M.E. McHenry: The influence of pressure on the phase stability of nanocomposite Fe89Zr7B4 during heating from energy dispersive X-ray diffraction. J. Appl. Phys. 113, 17A317 (2013).

    Google Scholar 

  31. V. DeGeorge, A. Deveraj, V. Keylin, J. Cui, and M.E. McHenry: Mass balance and atom probe tomography (APT) characterization of soft magnetic (Fe65Co35)79.5B13Si2Nb4Cu1.5 nanocomposites. IEEE Trans. Magn. 51, 2001704 (2014).

    Google Scholar 

  32. V. DeGeorge, S. Shen, P. Ohodnicki, M. Andio, and M.E. McHenry: Multiphase resistivity model for magnetic nanocomposites developed for high frequency high power transformation. J. Electron. Mater. 43, 96–108 (2014).

    CAS  Google Scholar 

  33. S. Shen, S.J. Kernion, P.R. Ohodnicki, and M.E. McHenry: Two-current model of the composition dependence of resistivity in amorphous (Fe100−xCox)89−yZr7B4Cuy alloys using a rigid-band assumption. J. Appl. Phys. 112, 103705–103709 (2012).

    Google Scholar 

  34. B. Cougo and J.W. Kolar: Integration of leakage inductance in tape wound core transformers for dual active bridge converters. In Proceeding of the International Conference of Integrated Power Electronics Systems (CIPS 2012) (IEEE, Nuremberg, Germany, March 6–8, 2012).

    Google Scholar 

  35. R. Beddingfield, S. Bhattacharya, and P. Ohodnicki: Physics of leakage flux induced eddy currents in power magnetics components, presented in 62nd annual conference. In Magnetism and Manetic Materials (AIP Advances, Pittsburgh, Pennsylvania, November 6–10, 2017).

    Google Scholar 

  36. R.P. Wojda and M.K. Kazimierczuk: Analytical optimization of solid-round-wire windings. IEEE Trans. Ind. Electron. 60, 1033–1041 (2013).

    Google Scholar 

  37. A.I. Maswood and L.K. Song: Design aspects of planar and conventional smps transformer: A cost benefit analysis. Industrial electronics. IEEE Trans. Ind. Electron. 50, 571–577 (2003).

    Google Scholar 

  38. A. Nysveen and M. Hernes: Minimum loss design of a 100 kHz inductor with foil windings. In Power Electronics and Applications, 1993, Fifth European Conference, Vol. 3 (IEEE, Brighton, Untied Kingdom, 1993); pp. 106–111.

    Google Scholar 

  39. J. Schutz, J. Roudet, and A. Schellmanns: Modeling litz wire windings. In Indus-Try Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS’ 97. Conference Record of the 1997 IEEE, Vol. 2 (New Orleans, Louisiana, 1997); pp. 1190–1195.

  40. A.M. Tuckey and D.J. Patterson: A minimum loss inductor design for an actively clamped resonant DC link inverter. In Industry Applications Conference, 2000. Conference Record of the 2000 IEEE, Vol. 5 (IEEE, Piscataway, New Jersey, 2000); pp. 3119–3126.

    Google Scholar 

  41. N. Mohan and T.M. Undeland: Power Electronics: Converters, Applications, and Design (Wiley, New Delhi, India, 2007).

    Google Scholar 

  42. W.G. Hurley, W.H. Wolfle, and J.G. Breslin: Optimized transformer design: Inclusive of high-frequency effects. IEEE Trans. Power Electron. 13, 651–659 (1998).

    Google Scholar 

  43. R. Petkov: Optimum design of a high-power, high-frequency transformer. IEEE Trans. Power Electron. 11, 33–42 (1996).

    Google Scholar 

  44. C.R. Sullivan: Optimal choice for number of strands in a litz-wire transformer winding. In Power Electronics Specialists Conference, 1997. PESC’97 Record., 28th Annual IEEE, Vol. 1 (IEEE, New York, New York, 1997); pp. 28–35.

    Google Scholar 

  45. C.R. Sullivan: Cost-constrained selection of strand diameter and number in a litz-wire transformer winding. IEEE Trans. Power Electron. 16, 281–288 (2001).

    Google Scholar 

  46. M.H. Kheraluwala, D.W. Novotny, and D.M. Divan: Design considerations for high power high frequency transformers. In Power Electronics Specialists Conference, 1990. PESC’ 90 Record., 21st Annual IEEE (IEEE, San Antonio, Texas, 1990); pp. 734–742.

    Google Scholar 

  47. G. Bertotti: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24, 621–630 (1988).

    Google Scholar 

  48. A. Krings: Iron losses in electrical machines-influence of material properties, manufacturing processes, and inverter operation. Ph.D. thesis, KTH Royal Institute of Technology, 2014. Available at: http://www.diva-portal.org/smash/record.jsf?pid=diva2:717326 (accessed June 23, 2015).

  49. S.A. Spornic: Automatisation de bancs de caractérisation 2D des tôles magnétiques, Influence des formes d’onde sur les mécanismes d’aimantation. Ph.D. thesis, Ecole Nationale Supérieure d’Ingénieurs Electriciens de Grenoble, 1998. Available at: https://tel.archives-ouvertes.fr/tel-00824201 (accessed June, 23, 2015).

  50. C.P. Steinmetz: On the law of hysteresis. Trans. Am. Inst. Electr. Eng. 3, 3 (1892).

    Google Scholar 

  51. R. Islam, Y. Guo, and J. Zhu: Power Converters for Medium Voltage Networks (Springer, Berlin/Heidelberg, Germany, 2014).

    Google Scholar 

  52. J.M. Silveyra, A.M. Leary, V. DeGeorge, S. Simizu, and M.E. McHenry: High speed electric motorsbased on high performance novel soft magnets. J. Appl. Phys. 115, 17A319 (2014).

    Google Scholar 

  53. J.M. Silveyra, P. Xu, V. Keylin, V. DeGeorge, and A. Leary: Amorphous and nanocomposite materials for energy-efficient electric motors. J. Electron. Mater. 45, 219–225 (2016).

    CAS  Google Scholar 

  54. R. Eggert, C. Wadia, C. Anderson, D. Bauer, F. Fields, L. Meinert, and P. Taylor: Rare Earths: Market Disruption, Innovation, and Global Supply Chains. Annu. Rev. Env. Resour. 41, 199–222 (2016).

    Google Scholar 

  55. M. Kurniawan, V. Keylin, and M.E. McHenry: Effect of alloy substituents on soft magnetic properties and economics of Fe-based and Co-based alloys. J. Mater. Res. 30, 2231–2237 (2015).

    CAS  Google Scholar 

  56. H. Iwanabe, M.E. McHenry, B. Lu, and D.E. Laughlin: Thermal stability of the nanocrystalline Fe–Co–Hf–B–Cu alloy. J. Appl. Phys. 85, 4424–4426 (1999).

    CAS  Google Scholar 

  57. M.A. Willard, D.E. Laughlin, and M.E. McHenry: Recent advances in the development of (Fe,Co)88M7B4Cu1 magnets. J. Appl. Phys. 87, 7091–7096 (2000).

    CAS  Google Scholar 

  58. K.J. Miller, A. Wise, A. Leary, D.E. Laughlin, V. Keylin, J. Huth, and M.E. McHenry: Increased induction in nanocomposite materials with reduced glass-formers. J. Appl. Phys. 107, 09A316–09A318 (2010).

    Google Scholar 

  59. S.J. Kernion, K.J. Miller, S. Shen, V. Keylin, J. Huth, and M.E. McHenry: High induction low loss FeCo-based nanocomposite alloys with reduced metalloid content. IEEE Trans. Magn. 47, 3452–3455 (2011).

    CAS  Google Scholar 

  60. J. Long, P.R. Ohodnicki, D.E. Laughlin, M.E. McHenry, T. Ohkubo, and K. Hono: Structural studies of secondary crystallization products of the Fe23B6-type in a nanocrystalline FeCoB-based alloy. J. Appl. Phys. 101, 09N114–09N116 (2007).

    Google Scholar 

  61. P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, and M. Widom: Ab initio theoretical study of magnetization and phase stability of the (Fe,Co,Ni)23B6 and (Fe,Co,Ni)23Zr6 structures of Crr23C6 and Mn23Th6 prototypes. Phys. Rev. B 78, 144414–144427 (2008).

    Google Scholar 

  62. Available at: www.metalprices.com.

  63. Available at: www.hitachimetals.com.

Download references

ACKNOWLEDGMENTS

This work is supported in part by the DOE SunLamp and DOE EERE AMO Programs. Federal Award number: DE-OE0000856 Flexible Large Power Solid State Transformer, Subaward No. 2017-0230-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mst Nazmunnahar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazmunnahar, M., Simizu, S., Ohodnicki, P.R. et al. Finite element analysis modeling of high voltage and frequency 3-phase solid state transformers enabled by metal amorphous nanocomposites. Journal of Materials Research 33, 2138–2147 (2018). https://doi.org/10.1557/jmr.2018.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.66

Navigation