Skip to main content

Advertisement

Log in

High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Environmental pollution and energy shortages seriously restrict the development of society. Photocatalytic oxidation technology can directly use solar energy to drive a series of chemical reactions. It has the advantages of low energy consumption, mild reaction conditions, and no secondary pollution, and is an effective method to solve organic pollutions in water. The key to achieve this process is to find and design efficient photocatalytic materials. In this paper, a novel silver-based metal–organic framework (Ag-MOF) [{Ag(H2btc)}{Ag2(Hbtc)}]n (1) (H3btc = 1,3,5-trimesic acid) is designed that exhibits a high performance in the photocatalytic degradation of methylene blue (MB). The process of photocatalytic degradation of MB conforms to pseudo first-order kinetics, and the rate is the fastest at pH 3 (K = 0.2654). Meanwhile, the photocatalytic mechanism of 1 is analyzed by in situ electron paramagnetic resonance (EPR) and ESI-MS spectra. The results are helpful for in situ research of the photocatalytic mechanism of MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A.K. An, J. Guo, E.J. Lee, S. Jeong, Y. Zhao, Z. Wang, and T. Leiknes: PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57 (2017).

    Article  CAS  Google Scholar 

  2. A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker, and C. Mangwandi: Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 307, 264 (2017).

    Article  CAS  Google Scholar 

  3. R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. Von Gunten, and B. Wehrli: The challenge of micropollutants in aquatic systems. Science 313, 1072 (2006).

    Article  CAS  Google Scholar 

  4. C.A. Martinez-Huitle and S. Ferro: Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 35, 1324 (2006).

    Article  CAS  Google Scholar 

  5. S.T. Glassmeyer, E.T. Furlong, D.W. Kolpin, A.L. Batt, R. Benson, J.S. Boone, and H.E. Mash: Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci. Total Environ. 581, 909 (2017).

    Article  CAS  Google Scholar 

  6. A. Zhang, Z. Gu, W. Chen, Q. Li, and G. Jiang: Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by Microwave–Fenton process. Environ. Sci. Pollut. Res. 25, 28907 (2018).

    Article  CAS  Google Scholar 

  7. N. Zhang, M.Q. Yang, S. Liu, Y. Sun, and Y.J. Xu: Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307 (2015).

    Article  CAS  Google Scholar 

  8. K.Q. Lu, X. Xin, N. Zhang, Z.R. Tang, and Y.J. Xu: Photoredox catalysis over graphene aerogel-supported composites. J. Mater. Chem. A 6, 4590 (2018).

    Article  CAS  Google Scholar 

  9. X. Xie, N. Zhang, Z.R. Tang, M. Anpo, and Y.J. Xu: Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal., B 237, 43 (2018).

    Article  CAS  Google Scholar 

  10. T. Robinson, G. McMullan, R. Marchant, and P. Nigam: Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247 (2001).

    Article  CAS  Google Scholar 

  11. P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, and D.B. Reissman: Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 329, 99 (2004).

    Article  CAS  Google Scholar 

  12. S. Giebner, S. Ostermann, S. Straskraba, M. Oetken, J. Oehlmann, and M. Wagner: Effectivity of advanced wastewater treatment: Reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity. Environ. Sci. Pollut. Res. 25, 3965 (2018).

    Article  CAS  Google Scholar 

  13. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, N.S. Thomaidis, and J. Xu: Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 323, 274 (2017).

    Article  CAS  Google Scholar 

  14. L. Yu, M. Han, and F. He: A review of treating oily wastewater. Arabian J. Chem. 10, S1913 (2017).

    Article  CAS  Google Scholar 

  15. I. Oller, S. Malato, and J. Sánchez-Pérez: Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 409, 4141 (2011).

    Article  CAS  Google Scholar 

  16. N. Bolong, A.F. Ismail, M.R. Salim, and T. Matsuura: A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239, 229 (2009).

    Article  CAS  Google Scholar 

  17. W.Z. Tang and H. An: UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31, 4157 (1995).

    Article  CAS  Google Scholar 

  18. A.H. Mamaghani, F. Haghighat, and C.S. Lee: Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal., B 203, 247 (2017).

    Article  CAS  Google Scholar 

  19. B. Yu, Q. Jiang, W. He, S. Liu, F. Zhou, J. Ji, and H. Chen: Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology. Appl. Energy 215, 699 (2018).

    Article  CAS  Google Scholar 

  20. Y. Song, J. Li, and C. Wang: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).

    Article  CAS  Google Scholar 

  21. S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, and P. Liu: Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296 (2017).

    Article  CAS  Google Scholar 

  22. M. Wang, Z. Peng, H. Li, Z. Zhao, and X. Fu: C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst. J. Mater. Res. 33, 685 (2018).

    Article  CAS  Google Scholar 

  23. J.T. Yan, M.Q. Xu, B. Chai, H.B. Wang, C.L. Wang, and Z.D. Ren: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603 (2017).

    Article  CAS  Google Scholar 

  24. H.W. Li, H.K. Zhu, M. Wang, X. Min, M.H. Fang, Z.H. Huang, Y.G. Liu, and X.W. Wu: A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res. 32, 3650 (2017).

    Article  CAS  Google Scholar 

  25. X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).

    Article  CAS  Google Scholar 

  26. Y. Ma, Z. Wang, X. Xu, and J. Wang: Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chin. J. Catal. 38, 1956 (2017).

    Article  CAS  Google Scholar 

  27. X.L. Yang, Y. Wang, X. Xu, Y. Qu, X. Ding, and H. Chen: Surface plasmon resonance-induced visible-light photocatalytic performance of silver/silver molybdate composites. Chin. J. Catal. 38, 260 (2017).

    Article  CAS  Google Scholar 

  28. F. Chen, H. Yang, W. Luo, P. Wang, and H. Yu: Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 38, 1990 (2017).

    Article  CAS  Google Scholar 

  29. S.N. Zhao, X.Z. Song, S.Y. Song, and H.J. Zhang: Highly efficient heterogeneous catalytic materials derived from metal–organic framework supports/precursors. Coord. Chem. Rev. 337, 80 (2017).

    Article  CAS  Google Scholar 

  30. L. Zhu, X.Q. Liu, H.L. Jiang, and L.B. Sun: Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129 (2017).

    Article  CAS  Google Scholar 

  31. J. Ye, L. Gagliardi, C.J. Cramer, and D.G. Truhlar: Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization. J. Catal. 360, 160 (2018).

    Article  CAS  Google Scholar 

  32. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre: Metal–organic frameworks—Prospective industrial applications. J. Mater. Chem. 16, 626 (2006).

    Article  CAS  Google Scholar 

  33. J. Huang, X.B. Zhang, H.Y. Song, C.X. Chen, F.Q. Han, and C.C. Wen: Protonated graphitic carbon nitride coated metal–organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Appl. Surf. Sci. 441, 85 (2018).

    Article  CAS  Google Scholar 

  34. F. Ye, H.F. Li, H.T. Yu, S. Chen, and X. Quan: Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 426, 177 (2017).

    Article  CAS  Google Scholar 

  35. G. Lan, Y.Y. Zhu, S.S. Veroneau, Z. Xu, D. Micheroni, and W. Lin: Electron injection from photoexcited metal–organic framework ligands to Ru2 secondary building units for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 140, 5326 (2018).

    Article  CAS  Google Scholar 

  36. S. Liu, Y. Wang, L. Ma, and H. Zhang: Ni2P/ZnS(CdS) core/shell composites with their photocatalytic performance. J. Mater. Res. 33, 3580 (2018).

    Article  CAS  Google Scholar 

  37. C.W. Kung, C.O. Audu, A.W. Peters, H. Noh, O.K. Farha, and J.T. Hupp: Copper nanoparticles installed in metal–organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett. 2, 2394 (2017).

    Article  CAS  Google Scholar 

  38. D. Huang, X. Wu, J. Tian, X. Wang, Z. Zhou, and D. Li: Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: Syntheses, crystal structure and catalytic degradation of nitrophenol. Chin. Chem. Lett. 29, 845 (2018).

    Article  CAS  Google Scholar 

  39. A.Q. Ma and L.G. Zhu: Diverse silver(I) sulfobenzoate coordination polymers and their recycling property as homogeneous catalyst in oxygenation of sulfide. RSC Adv. 4, 14691 (2014).

    Article  CAS  Google Scholar 

  40. K. Martín-Betancor, S. Aguado, I. Rodea-Palomares, M. Tamayo-Belda, F. Leganés, R. Rosal, and F. Fernández-Piñas: Co, Zn, and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms. Sci. Total Environ. 595, 547 (2017).

    Article  CAS  Google Scholar 

  41. G. Wyszogrodzka, B. Marszałek, B. Gil, and P. Dorożyński: Metal–organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discovery Today 21, 1009 (2016).

    Article  CAS  Google Scholar 

  42. J.L. Bredas, R. Silbey, D.S. Boudreaux, and R.R. Chance: Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555 (1983).

    Article  CAS  Google Scholar 

  43. Y. Shinde, S. Wadhai, A. Ponkshe, S. Kapoor, and P. Thakur: Decoration of Pt on the metal free RGO-TiO2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant β blocker. Int. J. Hydrogen Energy 43, 4015 (2018).

    Article  CAS  Google Scholar 

  44. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).

    Article  CAS  Google Scholar 

  45. M. Xing, J. Zhang, B. Qiu, B. Tian, M. Anpo, and M. Che: A Brown mesoporous TiO2−x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11, 1920 (2015).

    Article  CAS  Google Scholar 

  46. Z. Tong, D. Yang, T. Xiao, Y. Tian, and Z. Jiang: Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117 (2015).

    Article  CAS  Google Scholar 

  47. S. Li, C. Wei, Y. Hu, H. Wu, and F. Li: In situ synthesis and photocatalytic mechanism of a cyano bridged Cu(I) polymer. Inorg. Chem. Front. 5, 1282 (2018).

    Article  CAS  Google Scholar 

  48. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A. Howard, and H. Puschmann: OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the project of education department of Guangxi province (No. YB2014331), the project of undergraduate teaching reform of higher education in Guangxi (No. 2018JGA254) and the subject of “12th Five-Year” Plan of Guangxi Education Science (No. 2015C408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Ju Yin or Long-Guan Zhu.

Supplementary Material

43578_2019_34060991_MOESM1_ESM.doc

Supplementary Material for High-efficiency Photocatalytic Performance and Mechanism of Silver-based Metal-Organic Framework (approximately 1.14 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, XJ., Zhu, LG. High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. Journal of Materials Research 34, 991–998 (2019). https://doi.org/10.1557/jmr.2018.507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.507

Navigation