Skip to main content
Log in

Photomemristors using carbon nanowall/diamond heterojunctions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work demonstrates the in situ growth of carbon nanowalls (CNWs) on diamond semiconductors by microwave plasma-assisted chemical vapor deposition. The resulting CNW/diamond junctions behave as photomemristors having both photocontrollable multiple resistance states and nonvolatile memory functions. The resistance state (high or low resistance) can be selected by irradiation with blue or violet light in conjunction with the application of a bias voltage, giving a large resistance switching ratio of ∼106. The photoinduced resistance switching behaviors are rarely observed and has only been observed in a few materials and/or heterostructures. These junctions also exhibit a photoresponsivity of ∼12 A/W, which is much larger than that obtained from photodiodes composed of other materials. These results suggest that CNW/diamond (i.e., carbon sp2/sp3) junctions could have applications in novel photocontrollable devices, which have photosensing, memory, and switching functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Kasu, K. Ueda, Y. Yamauchi, A. Tallaire, and T. Makimoto: Diamond-based RF power transistors: Fundamentals and applications. Diamond Relat. Mater. 16, 1010 (2007).

    Article  CAS  Google Scholar 

  2. H. Kawarada, H. Tsuboi, T. Naruo, T. Yamada, T. Xu, A. Daicho, T. Saito, and A. Hiraiwa: C—H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl. Phys. Lett. 105, 013510 (2014).

    Article  Google Scholar 

  3. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  4. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    Article  CAS  Google Scholar 

  5. J. Yu, G. Liu, A.V. Sumant, V. Goyal, and A.A. Baladin: Graphene-on-diamond devices with increased current-carrying capacity: Carbon sp2-on-sp3 technology. Nano Lett. 12, 1603 (2012).

    Article  CAS  Google Scholar 

  6. S. Konabe, N.T. Cuong, M. Otani, and S. Okada: High-efficiency photoelectric conversion in graphene—diamond hybrid structures: Model and first-principles calculations. Appl. Phys. Express 6, 045104 (2013).

    Article  Google Scholar 

  7. T. Shiga, S. Konabe, J. Shiomi, T. Yamamoto, S. Maruyama, and S. Okada: Graphene—diamond hybrid structure as spin-polarized conducting wire with thermally efficient heat sinks. Appl. Phys. Lett. 100, 233101 (2012).

    Article  Google Scholar 

  8. Y. Ma, Y. Dai, M. Guo, and B. Huang: Graphene—diamond interface: Gap opening and electronic spin injection. Phys. Rev. B 85, 235448 (2012).

    Article  Google Scholar 

  9. Y. Wang, M. Jaiswal, M. Lin, S. Saha, B. Ozyilmaz, and K.P. Loh: Electronic properties of nanodiamond decorated graphene. ACS Nano 6, 1018 (2012).

    Article  CAS  Google Scholar 

  10. K. Ueda, S. Aichi, and H. Asano: Photo-controllable memristive behavior of graphene/diamond heterojunctions. Appl. Phys. Lett. 108, 222102 (2016).

    Article  Google Scholar 

  11. Y. Tzeng, W.L. Chen, C. Wu, J-Y. Lo, and C-Y. Li: The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition. Carbon 53, 120 (2013).

    Article  CAS  Google Scholar 

  12. K. Davami, M. Shaygan, N. Kheirabi, J. Zhao, D.A. Kovalenko, M.H. Rummeli, J. Opitz, G. Cuniberti, J-S. Lee, and M. Meyyappan: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).

    Article  CAS  Google Scholar 

  13. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004).

    Article  CAS  Google Scholar 

  14. H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino: Catalytic growth of graphene: Toward large-area single-crystalline graphene. J. Phys. Chem. Lett. 3, 2228 (2012).

    Article  CAS  Google Scholar 

  15. S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, and M. Hori: Initial growth process of carbon nanowalls synthesized by radical injection plasma enhanced chemical vapor deposition. J. Appl. Phys. 106, 094302 (2009).

    Article  Google Scholar 

  16. K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi: Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films. Phys. Rev. B 38, 4067 (1988).

    Article  CAS  Google Scholar 

  17. R.J. Nemanich, J.T. Glass, G. Lucovsky, and R.E. Shroder: Raman scattering characterization of carbon bonding in diamond and diamondlike thin films. J. Vac. Sci. Technol., A 6, 1783 (1988).

    Article  CAS  Google Scholar 

  18. A.N. Kolmogorov and V.H. Crespi: Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

    Article  Google Scholar 

  19. T.H. Borst and O. Weiss: Electrical characterization of homoepitaxial diamond films doped with B, P, Li, and Na during crystal growth. Diamond Relat. Mater. 7, 948 (1995).

    Article  Google Scholar 

  20. C-C. Chen, M. Aykol, C-C. Chang, A.F.J. Levi, and S.G. Cronin: Graphene—silicon Schottky diodes. Nano Lett. 11, 1863 (2011).

    Article  CAS  Google Scholar 

  21. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti: Metal—semiconductor—metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett. 72, 3175 (1998).

    Article  CAS  Google Scholar 

  22. L. Zeng, M. Wang, H. Hu, B. Nie, Y. Yu, C. Wu, L. Wang, J. Hu, C. Xie, F. Liang, and L. Luo: Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5, 9362 (2013).

    Article  CAS  Google Scholar 

  23. Y.V. Pershin and M.D. Ventra: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145 (2011).

    Article  Google Scholar 

  24. T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura: Hysteretic current—voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107 (2005).

    Article  Google Scholar 

  25. W. Wang, G.N. Panin, X. Fu, L. Zhang, P. IIanchezhiyan, V.O. Pelenovich, D. Fu, and T.W. Kang: MoS2 memristor with photoresistive switching. Sci. Rep. 6, 31224 (2016).

    Article  CAS  Google Scholar 

  26. P. Maier, F. Hartmann, M.R.S. Dias, M. Emmerling, C. Schneider, L.K. Castelano, M. Kamp, G.E. Marques, V. Lopez-Richard, L. Worschech, and S. Hofling: Light sensitive memristor with bi-directional and wavelength-dependent conductance control. Appl. Phys. Lett. 109, 023501 (2016).

    Article  Google Scholar 

  27. S. Porro, E. Accornero, C.F. Pirri, and C. Ricciardi: Memristive devices based on graphene oxide. Carbon 85, 383 (2015).

    Article  CAS  Google Scholar 

  28. T.J. Raeber, Z.C. Zhao, B.J. Mordoch, D.R. McKenzie, D.G. McCulloch, and J.G. Partridge: Resistive switching and transport characteristics of an all-carbon memristor. Carbon. 136, 280 (2018).

    Article  CAS  Google Scholar 

  29. Y. Chen, K. Chang, T. Chang, H. Chen, T. Young, T. Tsai, R. Zhang, T. Chu, J. Ciou, J. Lou, K. Chen, J. Chen, J. Zheng, and S.M. Sze: Resistance switching induced by hydrogen and oxygen in diamond-like carbon memristor. IEEE Electron Device Lett. 35, 1016 (2014).

    Article  CAS  Google Scholar 

  30. K. Ueda, K. Kawamoto, T. Soumiya, and H. Asano: High-temperature characteristics of Ag and Ni/diamond Schottky diodes. Diamond Relat. Mater. 38, 41 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a JSPS KAKENHI (number 16H04348) and by research grants from the Toyoaki Foundation, Tatematsu Foundation, Murata Science Foundation, and the Research Foundation for Opto-Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ueda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, K., Itou, H. & Asano, H. Photomemristors using carbon nanowall/diamond heterojunctions. Journal of Materials Research 34, 626–633 (2019). https://doi.org/10.1557/jmr.2018.498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.498

Navigation