Skip to main content
Log in

Particle orientation and bulk properties of magnetoactive elastomers fabricated with aligned barium hexaferrite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work studied the relationship between embedded particle volume fraction and magnetic particle orientation distribution in aligned 325 mesh barium hexaferrite (BHF) and polydimethylsiloxane (Sylgard 184; Dow Corning) magnetoactive elastomer (MAE) composites. BHF particles were aligned within the elastomer in the out-of-plane direction, as the material cured. Particle orientation distribution was defined herein by observations of the population of directions at which particle magnetizations resided; magnetization coincides with the physical crystallographic c-axis of BHF. The work used results of vibrating sample magnetometry experiments on MAEs with increasing volume concentrations of embedded ferromagnetic particles (10–30 v/v%) to determine changing widths of analytical particle distribution functions used to describe the range of particle orientations. With over 80% confidence, results showed that MAE composites having the intermediate 15 v/v% had the highest degree of magnetic (and thereby physical) alignment as well as magnetic remanence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. P.V. Lockette, S.E. Lofland, J. Biggs, J. Roche, J. Mineroff, and M. Babcock: Investigating new symmetry classes in magnetorheological elastomers: Cantilever bending behavior. Smart Mater. Struct. 20, 105022 (2011).

    Article  Google Scholar 

  2. J-H. Koo, A. Dawson, and H-J. Jung: Characterization of actuation properties of magnetorheological elastomers with embedded hard magnetic particles. J. Intell. Mater. Syst. Struct. 23, 1049–1054 (2012).

    Article  Google Scholar 

  3. P.V. Lockette and R. Sheridan: Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites. In Proceedings of the AMSE 2013 Conference on Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation, Vol. 1, N. Johnson, H. Naguib, T. Turner, I. Anderson, N. Bassiri-Gharb, M. Daqaq, V. Baba Sundaresan and A. Sarles, eds. (The American Society of Mechanical Engineers, New York, 2013); p. V001T01A020.

    Google Scholar 

  4. C. Breznak and P.V. Lockette: Evolution of the magnetization response of magneto-active elastomers made with hard-magnetic M-type barium hexaferrite particles. MRS Adv. 1, 39–43 (2016).

    Article  CAS  Google Scholar 

  5. P. Shepherd, K.K. Mallick, and R.J. Green: Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 312, 683–692 (2007).

    Article  Google Scholar 

  6. M. Radwan, M. Rashad, and M. Hessien: Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 181, 106–109 (2007).

    Article  CAS  Google Scholar 

  7. K. Sadhana, K. Praveena, and S. Matteppanavar: Structural and magnetic properties of nanocrystalline BaFe12O19 synthesized by microwave-hydrothermal method. Appl. Nanosci. 2, 247–252 (2012).

    Article  CAS  Google Scholar 

  8. M.R. Jolly, J.D. Carlson, B.C. Muñoz, and T.A. Bullions: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996).

    Article  CAS  Google Scholar 

  9. M.R. Jolly, J.D. Carlson, and B.C. Muñoz: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607 (1996).

    Article  CAS  Google Scholar 

  10. T. Shiga, A. Okada, and T. Kurauchi: Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci. 58, 787–792 (1995).

    Article  CAS  Google Scholar 

  11. R. Chokkalingam, R.S. Pandi, and M. Mahendran: Magnetomechanical behavior of Fe/PU magnetorheological elastomers. J. Compos. Mater. 45, 1545–1552 (2010).

    Article  Google Scholar 

  12. A. Boczkowska, S.F. Awietjan, T. Wejrzanowski, and K.J. Kurzydłowski: Image analysis of the microstructure of magnetorheological elastomers. J. Mater. Sci. 44, 3135–3140 (2009).

    Article  CAS  Google Scholar 

  13. M. Rodriguez-Aurelio and P.R. vonlockette: Evolution of texture in the fabrication of magneto-active elastomers. In Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures, and Intelligent Systems, A. Karami, S. Anton, M. Nouh, E. Freeman, Y. Tummala and J. Jovanova, eds. (The American Society of Mechanical Engineers, New York, 2017); p. V001T01A008.

    Google Scholar 

  14. M. Lokander and B. Stenberg: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003).

    Article  CAS  Google Scholar 

  15. M. Lokander and B. Stenberg: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003).

    Article  CAS  Google Scholar 

  16. M. Lokander, T. Reitberger, and B. Stenberg: Oxidation of natural rubber-based magnetorheological elastomers. Polym. Degrad. Stab. 86, 467–471 (2004).

    Article  CAS  Google Scholar 

  17. X. Zhang, S. Peng, W. Wen, and W. Li: Analysis and fabrication of patterned magnetorheological elastomers smart materials and structures. Smart Mater. Struct. 17, 045001 (2008).

    Article  Google Scholar 

  18. Y. Zhou, J. Stephen, A. Betts, G. Farrell, and L. Chen: The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers. Mater. Des. 67, 398–404 (2015).

    Article  CAS  Google Scholar 

  19. L.C. Davis: Model of magnetorheological elastomers. J. Appl. Phys. 85, 3348–3351 (1999).

    Article  CAS  Google Scholar 

  20. L. Palacios-Pineda, I. Perales-Martinez, L. Lozano-Sanchez, O. Martínez-Romero, J. Puente-Córdova, E. Segura-Cárdenas, and A. Elías-Zúñiga: Experimental investigation of the magnetorheological behavior of PDMS elastomer reinforced with iron micro/nanoparticles. Polymers 9, 696 (2017).

    Article  Google Scholar 

  21. M. Zaborski, J. Pietrasik, and M. Masłowski: Elastomers containing fillers with magnetic properties. Solid State Phenom. 154, 121–126 (2009).

    Article  CAS  Google Scholar 

  22. P. Saxena, J-P. Pelteret, and P. Steinmann: Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. Eur. J. Mech. A Solid. 50, 132–151 (2015).

    Article  Google Scholar 

  23. T.C. Gasser, R.W. Ogden, and G.A. Holzapfel: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc., Interface 3, 15–35 (2006).

    Article  Google Scholar 

  24. G.A. Holzapfel and R.W. Ogden: Constitutive modelling of arteries. Proc. R. Soc. A 466, 1551–1597 (2010).

    Article  Google Scholar 

  25. D.H. Han, J.P. Wang, and H.L. Luo: Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176–182 (1994).

    Article  CAS  Google Scholar 

  26. T.N. Lamichhane, V. Taufour, M.W. Masters, D.S. Parker, U.S. Kaluarachchi, S. Thimmaiah, S.L. Bud’ko, and P.C. Canfield: Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP. Appl. Phys. Lett. 109, 92402 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Science Foundation EFRI Grant number 1240459 and the Air Force Office of Scientific Research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey Breznak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breznak, C., von Lockette, P. Particle orientation and bulk properties of magnetoactive elastomers fabricated with aligned barium hexaferrite. Journal of Materials Research 34, 972–981 (2019). https://doi.org/10.1557/jmr.2018.496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.496

Navigation