Skip to main content
Log in

Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To understand the effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy, electrochemical tests, viz., electrochemical impedance spectroscopy (EIS) and fatigue tests, were carried out in PBS (phosphate buffered saline) solutions of pH 5.2, 7.4, and 9.0. The microstructure was investigated by scanning electron microscopy (SEM). Results are as follows: (i) the corrosion mechanism of AM60 under different pH values was different according to EIS; (ii) the corrosion resistance and corrosion fatigue life reduced in the following order: pH 9.0 > pH 7.4 > pH 5.2; (iii) the crack initiation was associated with hydrogen embrittlement of AM60 on the basis of fractographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R.C. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert: Progress and challenge for magnesium alloys as biomaterials. Adv. Eng. Mater. 10, B3 (2008).

    Article  CAS  Google Scholar 

  2. Y.C. Lin, X.M. Chen, and G. Chen: Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation. J. Alloys Compd. 509, 6838 (2011).

    Article  CAS  Google Scholar 

  3. Z.M. Shi, M. Liu, and A. Atrens: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579 (2010).

    Article  CAS  Google Scholar 

  4. A. Atrens, S. Johnston, Z.M. Shi, and M. Dargusch: Viewpoint—Understanding Mg corrosion in the body for biodegradable medical implants. Scr. Mater. 154, 92 (2018).

    Article  CAS  Google Scholar 

  5. A. Atrens, G.L. Song, F.Y. Cao, Z.M. Shi, and P. Bowen: Advances in Mg corrosion and research suggestions. J. Magnesium Alloys 1, 177 (2013).

    Article  CAS  Google Scholar 

  6. J. Zhao, L.L. Gao, H. Gao, X. Yuan, and X. Chen: Biodegradable behaviour and fatigue life of ZEK100 magnesium alloy in simulated physiological environment. Fatigue Fract. Eng. Mater. Struct. 38, 904 (2015).

    Article  CAS  Google Scholar 

  7. M.P. Staiger, A.M. Pietak, and J. Huadmai: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).

    Article  CAS  Google Scholar 

  8. R.K.S. Raman and S.E. Harandi: Resistance of magnesium alloys to corrosion fatigue for biodegradable implant applications: Current status and challenges. Materials 10, 1316 (2017).

    Article  CAS  Google Scholar 

  9. D. Bian, W.R. Zhou, Y. Liu, N. Li, Y.F. Zheng, and Z.L. Sun: Fatigue behaviors of HP-Mg, Mg–Ca, and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomater. 41, 351 (2016).

    Article  CAS  Google Scholar 

  10. L. Choudhary and R.K.S. Raman: Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater. 8, 916 (2012).

    Article  CAS  Google Scholar 

  11. R.K.S. Raman, S. Jafari, and S.E. Harandi: Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review. Eng. Fract. Mech. 137, 97 (2015).

    Article  Google Scholar 

  12. G.L. Song and A. Atrens: Understanding magnesium corrosion mechanism: A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 (2003).

    Article  CAS  Google Scholar 

  13. A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17, 400 (2015).

    Article  CAS  Google Scholar 

  14. G.L. Song and A. Atrens: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).

    Article  CAS  Google Scholar 

  15. X.N. Gu, W.R. Zhou, and Y.F. Zheng: Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—In simulated body fluid. Acta Biomater. 6, 4605 (2010).

    Article  CAS  Google Scholar 

  16. S. Jafari, R.K.S. Raman, and C.H.J. Davies: Corrosion fatigue of a magnesium alloy in modified simulated body fluid. Eng. Fract. Mech. 137, 2 (2015).

    Article  Google Scholar 

  17. S. Jafari, R.K.S. Raman, and C.H.J. Davies: Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J. Mech. Behav. Biomed. Mater. 65, 634 (2017).

    Article  CAS  Google Scholar 

  18. S. Jafari and R.K.S. Raman: In vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. Mater. Sci. Eng., C 78, 278 (2017).

    Article  CAS  Google Scholar 

  19. X.Y. Liu, P.K. Chu, and C.X. Ding: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng., R 47, 49 (2004).

    Article  CAS  Google Scholar 

  20. G. Chen, L.T. Lu, Y. Cui, R.S. Xing, H. Gao, and X. Chen: Ratcheting and low-cycle fatigue characterizations of extruded AZ31B Mg alloy with and without corrosive environment. Int. J. Fatigue 80, 364 (2015).

    Article  CAS  Google Scholar 

  21. C.L. Liu, Y.C. Xin, and X.B. Tian: Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J. Mater. Res. 22, 1806 (2007).

    Article  CAS  Google Scholar 

  22. K.G. Alberti and C. Cuthbert: The hydrogen ion in normal metabolism: A review. Ciba Found. Symp. 87, 1 (1982).

    CAS  Google Scholar 

  23. W.F. Ng, K.Y. Chiu, and F.T. Cheng: Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater. Sci. Eng., C 30, 898 (2010).

    Article  CAS  Google Scholar 

  24. S. Johnston, Z.M. Shi, and A. Atrens: The influence of pH on the corrosion rate of high-purity Mg, AZ91, and ZE41 in bicarbonate buffered Hanks’ solution. Corros. Sci. 101, 182 (2015).

    Article  CAS  Google Scholar 

  25. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke: AC impedance spectroscopy study of the corrosion behaviour of an AZ91 magnesium alloy in 0.1M sodium sulphate solution. Electrochim. Acta 52, 3299 (2007).

    Article  CAS  Google Scholar 

  26. M.B. Kannan and R.K.S. Raman: A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques. J. Biomed. Mater. Res., Part A 93A, 1050 (2010).

    Google Scholar 

  27. A. Eliezer, E.M. Gutman, E. Abramov, and Y. Unigovski: Corrosion fatigue of die-cast and extruded magnesium alloys. J. Light Met. 1, 179 (2001).

    Article  Google Scholar 

  28. N. Abidin, A.D. Atrens, D. Martin, and A. Atrens: Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41, and AZ91 in Hank’s solution at 37 °C. Corros. Sci. 53, 3542 (2011).

    Article  CAS  Google Scholar 

  29. Z.M. Shi, J.X. Jia, and A. Atrens: Galvanostatic anodic polarization curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg(OH)2. Corros. Sci. 60, 296 (2012).

    Article  CAS  Google Scholar 

  30. Y. Zheng, Y. Li, J.H. Chen, and Z.Y. Zou: Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy. Corros. Sci. 90, 445 (2015).

    Article  CAS  Google Scholar 

  31. Z.B. Sajuri, Y. Miyashita, and Y. Mutoh: Effects of humidity and temperature on the fatigue behaviour of an extruded AM60 magnesium alloy. Fatigue Fract. Eng. Mater. Struct. 28, 373 (2005).

    Article  CAS  Google Scholar 

  32. M. Diab, X. Pang, and H. Jahed: The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al–1% Zn) extrusion. Surf. Coat. Technol. 309, 423 (2017).

    Article  CAS  Google Scholar 

  33. A.M. Panindre, V.S. Raja, and M.A. Krishnan: Explanation for anomalous environmentally assisted cracking behaviour of a wrought Mg–Mn alloy in chloride medium. Corros. Sci. 115, 8 (2017).

    Article  CAS  Google Scholar 

  34. M.F. He, L. Liu, Y.T. Wu, Z.X. Tang, and W.B. Hu: Corrosion properties of surface-modified AZ91D magnesium alloy. Corros. Sci. 50, 3267 (2008).

    Article  CAS  Google Scholar 

  35. A. Atrens and W. Dietzel: The negative difference effect and unipositive Mg+. Adv. Eng. Mater. 9, 292 (2007).

    Article  CAS  Google Scholar 

  36. S.A. Khan, Y. Miyashita, Y. Mutoh, and T. Koike: Fatigue behavior of anodized AM60 magnesium alloy under humid environment. Mater. Sci. Eng., A 498, 377 (2008).

    Article  CAS  Google Scholar 

  37. S.A. Khan, M.S. Bhuiyan, Y. Miyashita, Y. Mutoh, and T. Koike: Corrosion fatigue behavior of die-cast and shot-blasted AM60 magnesium alloy. Mater. Sci. Eng., A 528, 1961 (2011).

    Article  CAS  Google Scholar 

  38. N. Maruyama, D. Mori, S. Hiromoto, K. Kanazawa, and M. Nakamura: Fatigue strength of 316L-type stainless steel in simulated body fluids. Corros. Sci. 53, 2222 (2011).

    Article  CAS  Google Scholar 

  39. M. Kappes, M. Iannuzzi, and R.M. Carranza: Pre-exposure embrittlement and stress corrosion cracking of magnesium alloy AZ31B in chloride solutions. Corrosion 70, 667 (2014).

    Article  CAS  Google Scholar 

  40. M.B. Kannan and W. Dietzel: Pitting-induced hydrogen embrittlement of magnesium-aluminium alloy. Mater. Des. 42, 321 (2012).

    Article  CAS  Google Scholar 

  41. R.G. Song, C. Blawert, and W. Dietzel: A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy. Mater. Sci. Eng., A 308, 399 (2005).

    Google Scholar 

  42. M. Kappes, M. Iannuzzi, and R.M. Carranza: Hydrogen embrittlement of magnesium and magnesium alloys: A review. J. Electrochem. Soc. 160, C168 (2013).

    Article  CAS  Google Scholar 

  43. Y. Uematsu, T. Kakiuchi, M. Nakajima, Y. Nakamura, S. Miyazaki, and H. Makino: Fatigue crack propagation of AM60 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake. Int. J. Fatigue 59, 234 (2014).

    Article  CAS  Google Scholar 

  44. T. Kakiuchi, Y. Uematsu, Y. Hatano, M. Nakajima, Y. Nakamura, and T. Taniguchi: Effect of hydrogen on fatigue crack propagation behavior of wrought magnesium alloy AM60 in NaCl solution under controlled cathodic potentials. Eng. Fract. Mech. 137, 88 (2015).

    Article  Google Scholar 

  45. M.I. Jamesh, G.S. Wu, and Y. Zhao: Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid. Corros. Sci. 91, 160 (2015).

    Article  CAS  Google Scholar 

  46. Y. Yang, F. Scenini, and M. Curioni: A study on magnesium corrosion by real-time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution. Electrochim. Acta 198, 174 (2016).

    Article  CAS  Google Scholar 

  47. T. Zhang, C.M. Chen, Y.W. Shao, G.Z. Meng, F.H. Wang, X.G. Li, and C.F. Dong: Corrosion of pure magnesium under thin electrolyte layers. Electrochim. Acta 53, 7921 (2008).

    Article  CAS  Google Scholar 

  48. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, London, 1966); ch. IV.

    Google Scholar 

  49. S.D. Wang, D.K. Xu, and B.J. Wang: Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg–Zn–Y–Zr alloy. Sci. Rep. 6, 29471 (2016).

    Article  CAS  Google Scholar 

  50. L.F. Zhou, Z.Y. Liu, and W. Wu: Stress corrosion cracking behavior of ZK60 magnesium alloy under different conditions. Int. J. Hydrogen Energy 42, 26162 (2017).

    Article  CAS  Google Scholar 

  51. N. Winzer, A. Atrens, and G.L. Song: A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7, 659 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grant Nos. 51571150 and 11572222) and Tianjin Natural Science Foundation (Grant No. 14JCYBJC16900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Gao or Lilan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Gao, H., Hu, J. et al. Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy. Journal of Materials Research 34, 1054–1063 (2019). https://doi.org/10.1557/jmr.2018.489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.489

Navigation