Skip to main content
Log in

CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laves phase plays a positive role in improving the strength of high-entropy alloys (HEAs); Nb and Ti elements have potential to promote Laves phase formation in some HEAs. For improving the strength of the face-centered cubic (FCC) CoCrFeMnNi HEA, a series of (CoCrFeMnNi)100−xNbx (atomic ratio: x = 0, 4, 8, 12, 16) and (CoCrFeMnNi)100−xTix (atomic ratio: x = 0, 2, 4, 6, 8, 12) HEAs were prepared by melting. The effects of Nb and Ti on the microstructure evolution and compressive properties of the CoCrFeMnNi HEAs were investigated. For (CoCrFeMnNi)100−xNbx HEAs, the second-phase (Laves and σ phase) volume fraction increased from 0 to 42%. The yield strength also increased gradually from 202 to 1010 MPa. However, the fracture strain decreased from 60% (no fracture) to 12% with increasing Nb content. For (CoCrFeMnNi)100−xTix HEAs, the yield strength increased from 202 to 1322 MPa. The Laves phase volume fraction also increased from 0 to 27%. However, the fracture strain decreased from 60% (no fracture) to 7.5% with increasing Ti content. Addition of Nb and Ti has a good effect on improving the strength of FCC CoCrFeMnNi HEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, and Z.F. Zhang: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122 (2017).

    Article  CAS  Google Scholar 

  2. S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, and Z.F. Zhang: Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng., A 712, 603 (2018).

    Article  CAS  Google Scholar 

  3. Y. Ma, Q. Wang, C. Li, L. Santodonato, M. Feygenson, C. Dong, and P.K. Liaw: Chemical short-range orders and the induced structural transition in high-entropy alloys. Scr. Mater. 64, 144 (2018).

    Google Scholar 

  4. W.Q. Wu, S. Ni, Y. Liu, and M. Song: Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. J. Mater. Res. 31, 3815 (2016).

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Liu, and T.X. Li: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).

    Article  CAS  Google Scholar 

  6. Y. Liu, Y. Zhang, H. Zhang, N.J. Wang, X. Chen, H.W. Zhang, and Y.X. Li: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloys Compd. 694, 869 (2017).

    Article  CAS  Google Scholar 

  7. Y. Liu, M. Chen, Y.X. Li, and X. Chen: Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys. Rare Met. Mater. Eng. 38, 602 (2009).

    Google Scholar 

  8. X.W. Liu, L. Liu, G. Liu, X.X. Wu, D.H. Lu, J.Q. Yao, W.M. Jiang, Z.T. Fan, and W.B. Zhang: The role of carbon in grain refinement of cast CrFeCoNi high-entropy alloys. Metall. Mater. Trans. A 49, 2151 (2018).

    Article  CAS  Google Scholar 

  9. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).

    Article  CAS  Google Scholar 

  10. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).

    Article  CAS  Google Scholar 

  11. J.Q. Yao, X.W. Liu, N. Gao, Q.H. Jiang, N. Li, G. Liu, W.B. Zhang, and Z.T. Fan: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy. Intermetallics 98, 79 (2018).

    Article  CAS  Google Scholar 

  12. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  13. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 213, 375 (2004).

    Google Scholar 

  14. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).

    Article  CAS  Google Scholar 

  15. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. 628, 170 (2015).

    Article  CAS  Google Scholar 

  16. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).

    Article  CAS  Google Scholar 

  17. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Novel microstructure and properties of multicomponent CoCrCuFeNiTix, alloys. Intermetallics 15, 357 (2007).

    Article  CAS  Google Scholar 

  18. W.Y. Huo, H. Zhou, F. Fang, Z.H. Xie, and J.Q. Jiang: Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater. Des. 134, 226 (2017).

    Article  CAS  Google Scholar 

  19. W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang: Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. J. Alloys Compd. 735, 897 (2018).

    Article  CAS  Google Scholar 

  20. T.T. Shun, L.Y. Chang, and M.H. Shiu: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).

    Article  CAS  Google Scholar 

  21. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).

    Article  CAS  Google Scholar 

  22. H. Jiang, L. Jiang, D.X. Qiao, Y.P. Lu, T.M. Wang, Z.Q. Cao, and T.J. Li: Effect of niobium addition on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2016).

    Article  Google Scholar 

  23. F. He, Z. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).

    Article  CAS  Google Scholar 

  24. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 57, 67 (2015).

    Article  CAS  Google Scholar 

  25. S.G. Ma and Y. Zhang: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).

    Article  CAS  Google Scholar 

  26. Q.S. Chen, Y.P. Lu, Y. Dong, T.M. Wang, and T.J. Li: Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-component alloy. Trans. Nonferrous Met. Soc. China 25, 2958 (2015).

    Article  CAS  Google Scholar 

  27. J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J. Alloys Compd. 497, 52 (2010).

    Article  CAS  Google Scholar 

  28. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu: Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater. Sci. Eng., A 527, 7210 (2010).

    Article  CAS  Google Scholar 

  29. Y. Yu, J. Wang, J.S. Li, H.C. Kou, and W.M. Liu: Characterization of BCC phases in AlCoCrFeNiTix high entropy alloys. Mater. Lett. 138, 78 (2015).

    Article  CAS  Google Scholar 

  30. J. Chen, P. Niu, Y. Liu, Y.Y. Lu, X.H. Wang, Y.L. Peng, and J.N. Liu: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94, 39 (2016).

    Article  CAS  Google Scholar 

  31. Z.M. Li, K.G. Pradeep, and Y. Deng: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  32. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).

    Article  CAS  Google Scholar 

  33. A. Gali and E.P. George: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).

    Article  CAS  Google Scholar 

  34. F. Otto, N.L. Hanold, and E.P. George: Microstructural evolution after thermo mechanical processing in an equiatomic, single-phase CoCrFeMnNi high entropy alloy with special focus on twin boundaries. Intermetallics 54, 39 (2014).

    Article  CAS  Google Scholar 

  35. X. Chen, Y.W. Sui, J.Q. Qi, Y.Z. He, F.X. Wei, Q.K. Meng, and Z. Sun: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 11, 32 (2017).

    Google Scholar 

  36. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 253 (2007).

    Google Scholar 

  37. S.W. Tsai: Theory of Composites Design (Think Composites Press, San Francisco, 1992).

    Google Scholar 

  38. Y. Zhang, Y. Zhou, J. Lin, G. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  39. T. Egami and Y. Waseda: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).

    Article  CAS  Google Scholar 

  40. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  41. S. Guo and C.T. Liu: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  42. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 645 (2011).

    Google Scholar 

  43. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Ye: Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).

    Article  CAS  Google Scholar 

  44. M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, and A.H. Cheng: A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4, 1 (2016).

    Article  CAS  Google Scholar 

  45. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 1 (2015).

    Google Scholar 

  46. N. Yurchenko, N. Stepanov, and G. Salishchev: Laves-phase formation criterion for high-entropy alloys. Met. Sci. J. 33, 17 (2016).

    Google Scholar 

  47. O.N. Senkov and D.B. Miracle: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).

    Article  CAS  Google Scholar 

  48. B.S. Murty, J.W. Yeh, and S. Ranganathan: High Entropy Alloys (Elsevier, London, 2014).

    Google Scholar 

  49. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2011).

    Article  CAS  Google Scholar 

  50. S. Guo, Q. Hu, C. Ng, and C.T. Liu: More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96 (2013).

    Article  CAS  Google Scholar 

  51. Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high entropy alloys. JOM 64, 830 (2012).

    Article  CAS  Google Scholar 

  52. R.R. Chen, G. Qin, H.T. Zheng, L. Wang, Y.Q. Su, Y.L. Chiu, H.S. Ding, J.J. Guo, and H.Z. Fu: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 144, 129 (2018).

    Article  CAS  Google Scholar 

  53. G. Qin, W.T. Xue, C.L. Fan, R.R. Chen, L. Wang, Y.Q. Su, H.S. Ding, and J.J. Guo: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200 (2018).

    Article  CAS  Google Scholar 

  54. G. Qin, S. Wang, R.R. Chen, X. Gong, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu: Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. J. Mater. Sci. Technol. 34, 365 (2018).

    Article  Google Scholar 

  55. R. Feng, M.C. Gao, C. Lee, M. Mathes, T.T. Zuo, S.Y. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw: Design of light-weight high-entropy alloys. Entropy 18, 333 (2016).

    Article  CAS  Google Scholar 

  56. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 42, 57 (2014).

    Article  CAS  Google Scholar 

  57. B. Chanda and J. Das: Composition dependence on the evolution of nanoeutectic in CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) high entropy alloys. Adv. Eng. Mater. 20, 1700908 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Fund of State Key Laboratory of Advanced Welding and Joining and National Natural Science Foundation of China (No. 51741404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruirun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Li, Z., Chen, R. et al. CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. Journal of Materials Research 34, 1011–1020 (2019). https://doi.org/10.1557/jmr.2018.468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.468

Navigation