Skip to main content
Log in

Enhanced microstructures and properties of spray-formed M3:2 high-speed steels by niobium addition and thermal-mechanical treatment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

M3:2 high-speed steel (HSS) billets with or without Nb addition were prepared by spray deposition. The effects of Nb and post-thermal-mechanical processing (decomposition treatment and hot forging), as well as heat treatment, on the microstructure and properties of M3:2 HSS were investigated. The microstructure of the as-deposited M3:2 HSS consisted of equiaxed grains with a mean size of approximately 25 µm and discontinuous plate-like M2C and irregular MC carbides distributed along grain boundaries. 0.5% Nb addition can refine the M2C plates and spheroidize MC carbides. With 2% Nb addition, the refined grains with a mean size of approximately 12 µm and continuous net of M6C and a uniform distribution of NbC carbides were obtained. The decomposition of metastable M2C carbides can be accelerated with 0.5% Nb addition due to the refined size and lower thermodynamic stability of M2C plates. With the increased degree of decomposition of M2C carbide, the M6C and MC carbides became refined and more uniformly distributed after optimal thermal-mechanical processing and heat treatment, which leads to a significant increase in bend strength and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. T.V. Pirtovšek, G. Kugler, M. Godec, and M. Terčelj: Three important points that relate to improving the hot workability of ledeburitic tool steels. Metall. Mater. Trans. A 43, 3797 (2012).

    Article  CAS  Google Scholar 

  2. J. Guo, L.Q. Ai, T.T. Wang, Y.L. Feng, D.C. Wan, and Q.X. Yang: Microstructure evolution and micro-mechanical behavior of secondary carbides at grain boundary in a Fe–Cr–W–Mo–V–C alloy. Mater. Sci. Eng., A 715, 359 (2018).

    Article  CAS  Google Scholar 

  3. V. Vitry, S. Nardone, J.P. Breyer, M. Sinnaeve, and F. Delaunois: Microstructure of two centrifugal cast high speed steels for hot strip mills applications. Mater. Des. 34, 372 (2012).

    Article  CAS  Google Scholar 

  4. G.Y. Deng, Q. Zhu, K. Tieu, H.T. Zhu, M. Reid, A.A. Saleh, L.H. Su, T.D. Ta, J. Zhang, C. Lu, Q. Wu, and D.L. Sun: Evolution of microstructure, temperature and stress in a high speed steel work roll during hot rolling: Experiment and modeling. J. Mater. Process. Technol. 240, 200 (2017).

    Article  CAS  Google Scholar 

  5. M.M. Serna and J.L. Rossi: MC complex carbide in AISI M2 high-speed steel. Mater. Lett. 63, 691 (2009).

    Article  CAS  Google Scholar 

  6. X.F. Zhou, F. Fang, F. Li, and J.Q. Jiang: Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel. J. Mater. Sci. 46, 1196 (2011).

    Article  CAS  Google Scholar 

  7. D. Bombač, M. Terčelj, M. Fazarinc, and G. Kugler: On the increase of intrinsic workability and hot working temperature range of M42 ledeburitic super high steel in as-cast and wrought states. Mater. Sci. Eng., A 703, 438 (2017).

    Article  CAS  Google Scholar 

  8. R.A. Mesquita and C.A. Barbosa: High-speed steels produced by conventional casting, spray forming and powder metallurgy. Mater. Sci. Forum 498, 244 (2005).

    Article  Google Scholar 

  9. W.J. Shen, L.P. Yu, Z. Li, Y.H. He, Q.K. Zhang, H.B. Zhang, Y. Jiang, and N. Lin: In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6. Met. Mater. Int. 23, 1150 (2017).

    Article  CAS  Google Scholar 

  10. C. Garcia, A. Romero, G. Herranz, Y. Blanco, and F. Martin: Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy. Mater. Char. 121, 175 (2016).

    Article  CAS  Google Scholar 

  11. D. Zhang, Z. Li, L. Xie, Y.F. Xiao, and F.C. Yin: Powder metallurgy of high speed steel produced by solid state sintering and heat treatment. Int. J. Mater. Res. 106, 870 (2015).

    Article  CAS  Google Scholar 

  12. V. Trabadelo, S. Giménez, and I. Iturriza: Microstructural characterization of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments. Mater. Sci. Eng., A 499, 360 (2009).

    Article  CAS  Google Scholar 

  13. E.J. Lavernia and T.S. Srivatsan: The rapid solidification processing of materials: Science, principles, technology, advances, and applications. J. Mater. Sci. 45, 287 (2010).

    Article  CAS  Google Scholar 

  14. G.Q. Zhang, H. Yuan, D.L. Jiao, Z. Li, Y. Zhang, and Z.W. Liu: Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing. Mater. Sci. Eng., A 558, 566 (2012).

    Article  CAS  Google Scholar 

  15. E.R. Jesus, E.S. Jesus, and J.L. Rossi: Performance assessment of spray formed AISI M2 high-speed steel tools. Mater. Sci. Forum 530, 315 (2006).

    Article  Google Scholar 

  16. P.S. Grant: Solidification in spray forming. Metall. Mater. Trans. A 38, 1520 (2007).

    Article  CAS  Google Scholar 

  17. L. Lu, L.G. Hou, J.X. Zhang, H.B. Wang, H. Cui, J.F. Huang, Y.A. Zhang, and J.S. Zhang: Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying. Mater. Charact. 117, 1 (2016).

    Article  CAS  Google Scholar 

  18. R.A. Mesquita and C.A. Barbosa: Spray forming high speed steel-properties and processing. Mater. Sci. Eng., A 383, 87 (2004).

    Article  CAS  Google Scholar 

  19. C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim, and J.S. Yang: Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls. Metall. Mater. Trans. A 36, 87 (2005).

    Article  Google Scholar 

  20. F.S. Pan, P.D. Ding, S.Z. Zhou, M. Kang, and D.V. Edmonds: Effects of silicon additions on the mechanical properties and microstructure of high speed steels. Acta Mater. 45, 4703 (1997).

    Article  CAS  Google Scholar 

  21. A.S. Chaus: Modifying cast tungsten-molybdenum high-speed steels with niobium, zirconium, and titanium. Met. Sci. Heat Treat. 47, 53 (2005).

    Article  CAS  Google Scholar 

  22. J.W. Park, H.C. Lee, and S. Lee: Composition, microstructure, hardness, and wear properties of high-speed steel rolls. Metall. Mater. Trans. A 30, 399 (1999).

    Article  Google Scholar 

  23. L.A. Dobrzański and A. Zarychta: The structure and properties of W–Mo–V high-speed steels with increased contents of Si and Nb after heat treatment. J. Mater. Process. Technol. 77, 180 (1998).

    Article  Google Scholar 

  24. R.A. Mesquita and H.J. Kestenbach: Influence of silicon on secondary hardening of 5 wt% Cr steels. Mater. Sci. Eng., A 556, 970 (2012).

    Article  CAS  Google Scholar 

  25. M. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski: Microstructure and mechanical properties of Fe–Cr–C–Nb white cast irons. Mater. Des. 47, 41 (2013).

    Article  CAS  Google Scholar 

  26. M.A. Hamidzadeh, M. Meratian, and M.M. Zahrani: A study on the microstructure and mechanical properties of AISI D2 tool steel modified by niobium. Mater. Sci. Eng., A 556, 758 (2012).

    Article  CAS  Google Scholar 

  27. X.H. Zhi, J.D. Xing, H.G. Fu, and B. Xiao: Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron. Mater. Lett. 62, 857 (2008).

    Article  CAS  Google Scholar 

  28. G.C. Coelho, J.A. Golczewski, and H.F. Fischmeister: Thermodynamic calculations for Nb-containing high-speed steels and white-cast-iron alloys. Metall. Mater. Trans. A 34, 1749 (2003).

    Article  Google Scholar 

  29. F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, and R.J. Cheng: Phase transformation refinement of coarse primary carbides in M2 high speed steel. Prog. Nat. Sci.: Mater. 21, 180 (2011).

    Article  Google Scholar 

  30. H. Fredriksson, M. Hillert, and M. Nica: The decomposition of the M2C carbide in high speed steel. Scand. J. Metall. 8, 116 (1970).

    Google Scholar 

  31. E.S. Lee, W.J. Park, K.H. Baik, and S. Ahn: Different carbide types and their effect on bend properties of a spray-formed high speed steel. Scr. Mater. 39, 1133 (1998).

    Article  CAS  Google Scholar 

  32. E.S. Lee, W.J. Park, J.Y. Jung, and S. Ahn: Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel. Metall. Mater. Trans. A 29, 1395 (1998).

    Article  Google Scholar 

  33. Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li: Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J. Mater. Process. Technol. 210, 536 (2010).

    Article  CAS  Google Scholar 

  34. J. Mclaughlin, R.W. Kraft, and J.I. Goldstein: Characterization of the solidification structures within the dendritic core of M2 high speed steel. Metall. Trans. A 8, 1787 (1977).

    Article  Google Scholar 

  35. R.H. Barkalow, R.W. Kraft, and J.I. Goldstein: Solidification of M2 high speed steel. Metall. Trans. 3, 919 (1972).

    Article  CAS  Google Scholar 

  36. H.F. Fischmeister, R. Riedl, and S. Karagöz: Solidification of high-speed tool steels. Metall. Trans. A 20, 2133 (1989).

    Article  Google Scholar 

  37. G. Zepon, N. Ellendt, V. Uhlenwinkel, and C. Bolfarini: Solidification sequence of spray-formed steels. Metall. Mater. Trans. A 47, 842 (2016).

    Article  CAS  Google Scholar 

  38. S. Karagöz and H.F. Fischmeister: Niobium-alloyed high speed steel by powder metallurgy. Metall. Trans. A 19, 1395 (1988).

    Article  Google Scholar 

  39. H.B. Wang, L.G. Hou, J.X. Zhang, L. Lu, H. Cui, J.F. Huang, and J.S. Zhang: Microstructures and high temperature properties of spray formed Nb-containing M3 high speed steel. Mater. Werkst. 45, 689 (2014).

    Article  CAS  Google Scholar 

  40. H.B. Wang, L.G. Hou, J.X. Zhang, L. Lu, Y.P. Yu, H. Cui, and J.S. Zhang: Microstructures and properties of spray formed Nb-containing M3 high speed steel. Acta Metall. Sin. 50, 1421 (2014).

    CAS  Google Scholar 

  41. H. Henein, V. Uhlenwinkel, U. Fritsching: Metal Spray and Spray Deposition, 1st ed. (Springer International Publishing, Cham, Switzerland, 2017); p. 320.

    Book  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606303), Open Foundation of State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (Grant No. 2018-Z01), Program of the University Students’ Innovation and Pioneering (Grant No. XZG-16-08-15), and Ph.D. Research Startup Project of Jiangxi University of Science and Technology (Grant No. 3401223322). The authors thank Dr. Lin Lu, Dr. Jinxiang Zhang, Dr. Zhigang Wang, Mr. Xiyu He, Ms. Panpan Jiang, Ms. Xinger Wen, and Ms. Lili Zhao for their help with material preparation and academic discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longgang Hou or Hongjin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hou, L., Ou, P. et al. Enhanced microstructures and properties of spray-formed M3:2 high-speed steels by niobium addition and thermal-mechanical treatment. Journal of Materials Research 34, 1043–1053 (2019). https://doi.org/10.1557/jmr.2018.460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.460

Navigation