Skip to main content
Log in

Intracavity metal contacts for organic microlasers

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The realization of an electrically driven organic solid-state laser is an ambitious but highly desirable goal. Many obstacles need to be solved before a working device can be realized. One of the most challenging tasks is an incorporation of intracavity metal contacts, which, on the one hand, would not substantially degrade optical properties of the whole device and, on the other hand, would ensure sufficient current density to reach lasing. In this paper, we present different contact compositions aiming to realize high-quality intracavity metal contacts. We build a top contact consisting of 0.5 nm of aluminum and 4 nm of silver which has a conductivity of 1.9 × 107 (Ω/m) and is not increasing the optical lasing threshold of an organic microcavity. To get a better understanding of charge carriers influencing the device performance, we have performed a set of measurements, where a hybrid OLED—MC device was excited both optically and electrically at the same time. These experiments suggest that the charge carriers do not degrade electrical performance, at least for current densities in the range of A/cm2. Moreover, our observations suggest that, in some cases, simultaneous optical excitation can contribute to more efficient electrical pumping of the OLED-MC device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. C.W. Tang and S.A. VanSlyke: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).

    Article  CAS  Google Scholar 

  2. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).

    Article  CAS  Google Scholar 

  3. G.A. Chamberlain: Organic solar cells: A review. Sol. Cell. 8, 47 (1983).

    Article  CAS  Google Scholar 

  4. D. Wöhrle and D. Meissner: Organic solar cells. Adv. Mater. 3, 129 (1991).

    Article  Google Scholar 

  5. A.J. McCormack, S.C. Tong, and W.D. Cooke: Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds. Anal. Chem. 37, 1470 (1965).

    Article  CAS  Google Scholar 

  6. H. Koezuka, A. Tsumura, and T. Ando: Field-effect transistor with polythiophene thin film. Synth. Met. 18, 699 (1987).

    Article  CAS  Google Scholar 

  7. A. Tsumura, H. Koezuka, and Y. Ando: Polythiophene field-effect transistor: Its characteristics and operation mechanism. Synth. Met. 25, 11 (1988).

    Article  CAS  Google Scholar 

  8. V.G. Kozlov, V. Bulovic, P.E. Burrows, and S.R. Forrest: Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362 (1997).

    Article  CAS  Google Scholar 

  9. J.H. Schön, C. Kloc, A. Dodabalapur, and B. Batlogg: An organic solid state injection laser. Science 289, 599 (2000).

    Article  Google Scholar 

  10. M. Koschorreck, R. Gehlhaar, V.G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo: Dynamics of a high-Q vertical-cavity organic laser. Appl. Phys. Lett. 87, 181108 (2005).

    Article  Google Scholar 

  11. N. Tessler, G.J. Denton, and R.H. Friend: Lasing from conjugated-polymer microcavities. Nature 382, 695 (1996).

    Article  CAS  Google Scholar 

  12. I.D.W. Samuel, E.B. Namdas, and G.A. Turnbull: How to recognize lasing. Nat. Photonics 3, 546 (2009).

    Article  CAS  Google Scholar 

  13. M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, A. Fischer, A. Bourdrioua, and C.C. Lee: Optimal design of a microcavity organic laser device under electrical pumping. Opt. Express 19, 493 (2011).

    Article  CAS  Google Scholar 

  14. Y. Setoguchi and C. Adachi: Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. J. Appl. Phys. 108, 064516 (2010).

    Article  Google Scholar 

  15. K. Yoshida, H. Nakanotani, and C. Adachi: Effect of Joule heating on transient current and electroluminescence in p—i—n organic light-emitting diodes under pulsed voltage operation. Org. Electron. 31, 287 (2016).

    Article  CAS  Google Scholar 

  16. D. Kasemann, R. Brückner, H. Fröb, and K. Leo: Organic light-emitting diodes under high currents explored by transient electroluminescence on the nanosecond scale. Phys. Rev. B 84, 115208 (2011).

    Article  Google Scholar 

  17. H. Nakanotani, T. Oyamada, Y. Kawamura, H. Sasabe, and C. Adachi: Injection and transport of high current density over 1000 A/cm2 in organic light emitting diodes under pulse excitation. Jpn. J. Appl. Phys., Part 1 44, 3659 (2005).

    Article  CAS  Google Scholar 

  18. H. Nakanotani, H. Sasabe, and C. Adachi: Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Appl. Phys. Lett. 86, 213506 (2005).

    Article  Google Scholar 

  19. A.C. Chime, S. Bensmida, M. Chakaroun, M.W. Lee, H. Nkwawo, and A.P.A. Fischer: Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON-OFF regime. Org. Electron. 56, 284 (2018).

    Article  CAS  Google Scholar 

  20. S. Meister, R. Brückner, M. Sudzius, H. Fröb, and K. Leo: Optically pumped lasing of an electrically active hybrid OLED-microcavity. Appl. Phys. Lett. 112, 113301 (2018).

    Article  Google Scholar 

  21. M. Reufer, S. Riechel, J.M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, V. Wittwer, and U. Scherf: Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 84, 3262 (2004).

    Article  CAS  Google Scholar 

  22. S. Cui, Y. Hu, Z. Lou, R. Yi, Y. Hou, and F. Teng: Light emitting field-effect transistors with vertical heterojunctions based on pentacene and tris-(8-hydroxyquinolinato) aluminum. Org. Electron. 22, 51 (2015).

    Article  CAS  Google Scholar 

  23. I. Slowik, A. Fischer, H. Fröb, S. Lenk, S. Reineke, and K. Leo: Novel organic light-emitting diode design for future lasing applications. Org. Electron. 48, 132 (2017).

    Article  CAS  Google Scholar 

  24. A. Mischok, R. Brückner, C. Reinhardt, M. Sudzius, V.G. Lyssenko, H. Fröb, and K. Leo: Threshold reduction by multidimensional photonic confinement in metal-organic microcavities. Proc. SPIE 9137, 91370D–1 (2014).

    Article  Google Scholar 

  25. R. Brückner, A.A. Zakhidov, R. Scholz, M. Sudzius, S.I. Hintschich, H. Fröb, V.G. Lyssenko, and K. Leo: Phase-locked coherent modes in a patterned metal—organic microcavity. Nat. Photonics 6, 322 (2012).

    Article  Google Scholar 

  26. A. Mischok, R. Brückner, M. Sudzius, C. Reinhardt, V.G. Lyssenko, H. Fröb, and K. Leo: Photonic confinement in laterally structured metal-organic microcavities. Appl. Phys. Lett. 105, 051108 (2014).

    Article  Google Scholar 

  27. K. Hayashi, H. Nakanotani, M. Inoue, K. Yoshida, O. Mikhnenko, T.Q. Nguyen, and C. Adachi: Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015).

    Article  Google Scholar 

  28. Y. Zhao, F. Yun, Z. Wu, Y. Li, B. Jiao, Y. Huang, S. Li, L. Feng, M. Guo, W. Ding, Y. Zhang, and J. Dou: Efficiency roll-off suppression in organic light-emitting diodes at high current densities using gold bowtie nanoantennas. Appl. Phys. Express 9, 022101 (2016).

    Article  Google Scholar 

  29. S. Meister, R. Brückner, H. Fröb, and K. Leo: Electrical investigations of hybrid OLED microcavity structures with novel encapsulation methods. Proc. SPIE 9895, Organic Photonics VII, 98950B (2016).

    Article  Google Scholar 

  30. R. Brückner, M. Sudzius, H. Fröb, V.G. Lyssenko, and K. Leo: Saturation of laser emission in a small mode volume organic microcavity. J. Appl. Phys. 109, 103116 (2011).

    Article  Google Scholar 

  31. F. Nehm, S. Schubert, L. Müller-Messkamp, and K. Leo: Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films. Thin Solid Films 556, 381 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge support by the German Research Foundation (DFG) with the DFG projects Tailored Disorder SPP1839, Nos. LE 747/47-1 and 747/55-1 as well as the Cluster of Excellence Center for Advancing Electronics Dresden.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Meister or Karl Leo.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meister, S., Brückner, R., Sudzius, M. et al. Intracavity metal contacts for organic microlasers. Journal of Materials Research 34, 571–578 (2019). https://doi.org/10.1557/jmr.2018.457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.457

Navigation