Skip to main content
Log in

Substrate-independent stress–strain behavior of diamond-like carbon thin films by nanoindentation with a spherical tip

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method for extracting the substrate-independent stress–strain curves of thin films was developed using spherical nanoindentation to investigate the yield behavior of diamond-like carbon (DLC) thin films with Young’s moduli of ∼73 GPa and ∼76 GPa. The resulting stress–strain curves showed that these films commence yielding at ∼13 GPa and ∼14 GPa, respectively. These yield strength values agree with the critical pressure necessary to initiate the transformation of sp2-bonded carbon into significantly harder sp3-bonded carbon, indicating that the yielding of the materials is associated with the sp2-to-sp3 phase transition. The ability of a DLC film to accommodate a progressively increasing contact stress with strain beyond the yield point while dissipating part of the accumulated strain energy, as evidenced in this work, implies a unique mechanism of the brittle material for passively mitigating contact deformation and fracture in tribological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Grill: Diamond-like carbon: State of the art. Diam. Relat. Mater. 8, 428 (1999).

    Article  CAS  Google Scholar 

  2. A. Erdemir and C. Donnet: Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311 (2006).

    Article  CAS  Google Scholar 

  3. N. Fujisawa, D.R. McKenzie, N.L. James, J.C. Woodard, and M.V. Swain: Combined influences of mechanical properties and surface roughness on the tribological properties of amorphous carbon coatings. Wear 260, 62 (2006).

    Article  CAS  Google Scholar 

  4. S. Pathak and S.R. Kalidindi: Spherical nanoindentation stress-strain curves. Mater. Sci. Eng. R Rep. 91, 1 (2015).

    Article  Google Scholar 

  5. J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, and R. Brenn: Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 79, 1416 (1996).

    Article  CAS  Google Scholar 

  6. J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva: Stress-induced formation of high-density amorphous carbon thin films. J. Appl. Phys. 82, 6024 (1997).

    Article  CAS  Google Scholar 

  7. W. Lu and K. Komvopoulos: Effect of stress-induced phase transformation on nanomechanical properties of sputtered amorphous carbon films. Appl. Phys. Lett. 82, 2437 (2003).

    Article  CAS  Google Scholar 

  8. C. Liu, Y. Lin, Z. Zhou, and K.Y. Li: Dual phase amorphous carbon ceramic achieves theoretical strength limit and large plasticity. Carbon 122, 276 (2017).

    Article  CAS  Google Scholar 

  9. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).

    Google Scholar 

  10. J.S. Field and M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  11. S.R. Kalidindi and S. Pathak: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56, 3523 (2008).

    Article  CAS  Google Scholar 

  12. H. Hertz: Miscellaneous Papers, D.E. Jones and G.A. Schott eds. (Macmillan, London, U.K., 1896); pp. 146–183.

  13. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  14. A.C. Fischer-Cripps: Nanoindentation, 3rd ed. (Springer, New York, NY, 2011); pp. 8–10, 24, 43–46, 150–152.

    Book  Google Scholar 

  15. J. Hay and B. Crawford: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727 (2011).

    Article  CAS  Google Scholar 

  16. H. Gao, C.H. Chiu, and J. Lee: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solid Struct. 29, 2471 (1992).

    Article  Google Scholar 

  17. H. Song: Selected mechanical problems in load and depth sensing indentation testing. Ph.D. thesis, Rice University, Houston, TX, 1999, pp. 51–72.

    Google Scholar 

  18. C. Lenardi, M.A. Baker, V. Briois, L. Nobili, P. Piseri, and W. Gissler: Properties of amorphous a-CH(:N) films synthesized by direct ion beam deposition and plasma-assisted chemical vapour deposition. Diam. Relat. Mater. 8, 595 (1999).

    Article  CAS  Google Scholar 

  19. N. Fujisawa, T.F. Zhang, B.H. Lee, and K.H. Kim: A robust method for extracting the mechanical properties of thin films with rough surfaces by nanoindentation. J. Mater. Res. 23, 3777 (2016).

    Article  Google Scholar 

  20. S.J. Cho, K.R. Lee, K.Y. Eun, J.H. Hahn, and D.H. Ko: Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films. Thin Solid Films 341, 207 (1999).

    Article  CAS  Google Scholar 

  21. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  22. G.G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172 (1909).

    Article  CAS  Google Scholar 

  23. K. Zhou, P. Ke, X. Li, Y. Zou, and A. Wang: Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique. Appl. Surf. Sci. 329, 281 (2015).

    Article  CAS  Google Scholar 

  24. L. Qiang, B. Zhang, Y. Zhou, and J. Zhang: Improving the internal stress and wear resistance of DLC film by low content Ti doping. Solid State Sci. 20, 17 (2013).

    Article  CAS  Google Scholar 

  25. J.G. Swadener, B. Taljat, and G.M. Pharr: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).

    Article  CAS  Google Scholar 

  26. J.Z. Hu, L.D. Merkle, C.S. Menoni, and I.L. Spain: Crystal data for high-pressure phases of silicon. Phys. Rev. B 34, 4679 (1986).

    Article  CAS  Google Scholar 

  27. A. Leyland and A. Matthrew: On the significance of the H / E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 246, 1 (2000).

    Article  CAS  Google Scholar 

  28. M. Sakai: Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  29. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solid. 18, 115 (1970).

    Article  Google Scholar 

  30. A.G. Atkins and D. Tabor: Plastic indentation in metals with cones. J. Mech. Phys. Solid. 13, 149 (1965).

    Article  Google Scholar 

  31. S.D. Mesarovic and N.A. Fleck: Spherical indentation of elastic-plastic solids. Proc. R. Soc. London, Ser. A 455, 2707 (1999).

    Article  Google Scholar 

  32. Y.J. Park and G.M. Pharr: Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 447–448, 246 (2004).

    Article  Google Scholar 

  33. C. Meade and R. Jeanloz: Frequency-dependent equation of state of fused silica to 10 GPa. Phys. Rev. B 35, 236 (1987).

    Article  CAS  Google Scholar 

  34. F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.U. Mao, and A.F. Goncharov: The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141 (1996).

    Article  CAS  Google Scholar 

  35. W. Guo, C.Z. Zhu, T.X. Yu, C.H. Woo, B. Zhang, and Y.T. Dai: Formation of sp3 bonding in nanoindented carbon nanotubes and graphite. Phys. Rev. Lett. 93, 245502 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078873 and 2013M3A6B1078874). The authors also acknowledge support from Hysitron, Inc. on the state-of-the-art TI 950 TriboIndenter® nanomechanical test instrument used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisawa, N., Zhang, T.F., Li, O.L. et al. Substrate-independent stress–strain behavior of diamond-like carbon thin films by nanoindentation with a spherical tip. Journal of Materials Research 33, 699–708 (2018). https://doi.org/10.1557/jmr.2018.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.45

Navigation