Skip to main content

Advertisement

Log in

Aging behavior of the extruded SiCp-reinforced AZ91 Mg alloy composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of SiCp on the aging behavior of the extruded SiCp/AZ91 composite fabricated by stir casting was investigated in detail. The necklace-type distribution of the particles in the cast SiCp/AZ91 composite was destroyed, and the extrusion bands consisting of SiCp and small dynamic recrystallized grains formed aligning along the extrusion direction. Addition of SiCp could accelerate the aging kinetics of the AZ91 matrix because of the overlapped particle plastic zone. The improved particle distribution and refined grains caused by the recrystallization could affect the aging behavior of the SiCp/AZ91 composite. The Mg17A112 discontinuous precipitates preferred to nucleate at the SiC/Mg interfaces and the grain boundaries within the extrusion bands and then expanded into the particle-free region. Moreover, the promoted discontinuous precipitates would suppress the continuous intragranular precipitates with respect to the unreinforced AZ91 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang: What is going on in magnesium alloys?J. Mater. Sci. Technol. 34, 245 (2018).

    Article  Google Scholar 

  2. L.J. Huang, L. Geng, and H.X. Peng: Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?Prog. Mater. Sci. 71, 93 (2015).

    Article  CAS  Google Scholar 

  3. Y. Wu and E.J. Lavernia: Strengthening behavior of particulate reinforced MMCs. Scr. Metall. Mater. 22, 173 (1992).

    Article  Google Scholar 

  4. X. Yang, F. Wang, and Z. Fan: Crystallographic study of nucleation in SiC particulate reinforced magnesium matrix composite. J. Alloys Compd. 706, 430 (2017).

    Article  CAS  Google Scholar 

  5. R. Raj and D.G. Thakur: Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Arch. Civ. Mech. Eng. 16, 949 (2016).

    Article  Google Scholar 

  6. P. Jin, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, and S. Li: Effect of solution temperature on aging behavior and properties of SiCp/Al–Cu–Mg composites. Mater. Sci. Eng., A 528, 1504 (2011).

    Article  Google Scholar 

  7. P. Rodrigo, P. Poza, V. Utrilla, and A. Ureńa: Effect of reinforcement geometry on precipitation kinetics of powder metallurgy AA2009/SiC composites. J. Alloys Compd. 479, 451 (2009).

    Article  CAS  Google Scholar 

  8. Y. Cui, T.Z. Jin, L.G. Cao, and F.B. Liu: Aging behavior of high volume fraction SiCp/Al composites fabricated by pressureless infiltration. J. Alloys Compd. 681, 233 (2016).

    Article  CAS  Google Scholar 

  9. J. Guo and X. Yuan: The aging behavior of SiC/Gr/6013Al composite in T4 and T6 treatments. Mater. Sci. Eng., A 499, 212 (2009).

    Article  Google Scholar 

  10. G.E. Kiourtsidis, S.M. Skolianos, and G.A. Litsardakis: Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites. Mater. Sci. Eng., A 382, 351 (2004).

    Article  Google Scholar 

  11. L.T. Jiang, M. Zhao, G.H. Wu, and Q. Zhang: Aging behavior of sub-micron Al2O3P/2024Al composites. Mater. Sci. Eng., A 392, 366 (2005).

    Article  Google Scholar 

  12. G.M. Janowski and B.J. Pletka: The effect of particle size and volume fraction on the aging behavior of a liquid-phase sintered SiC/Aluminum composite. Metall. Mater. Trans. A 26, 3027 (1995).

    Article  Google Scholar 

  13. G.S.P. Kumar, P.G. Koppad, R. Keshavamurthy, and M. Alipour: Microstructure and mechanical behavior of in sit fabricated AA6061–TiC metal matrix composites. Arch. Civ. Mech. Eng. 17, 535 (2017).

    Article  Google Scholar 

  14. S. Pal, R. Mitra, and V.V. Bhanuprasad: Aging behavior of Al–Cu–Mg alloy–SiC composites. Mater. Sci. Eng., A 480, 496 (2008).

    Article  Google Scholar 

  15. X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang, and M.Y. Zheng: Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Mater. Sci. Eng., A 682, 491 (2017).

    Article  CAS  Google Scholar 

  16. C. Badini, F. Marino, M. Montorsi, and X.B. Guo: Precipitation phenomena in B4C-reinforced magnesium-based composite. Mater. Sci. Eng., A 157, 53 (1992).

    Article  Google Scholar 

  17. J. Kiehn, K.U. Kainer, P. Vostrý, and I. Stulíková: Resistivity changes due to precipitation effects in fibre reinforced Mg–Al–Zn–Mn alloy. Phys. Status Solidi A 161, 85 (1995).

    Article  Google Scholar 

  18. M.Y. Zheng, K. Wu, S. Kamado, and Y. Kojima: Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Mater. Sci. Eng., A 348, 67 (2003).

    Article  Google Scholar 

  19. X.F. Sun, C.J. Wang, K.K. Deng, J.W. Kang, Y. Bai, and K.B. Nie: Aging behavior of AZ91 matrix influenced by 5 μm SiCp: Investigation on the microstructure and mechanical properties. J. Alloys Compd. 727, 1263 (2017).

    Article  CAS  Google Scholar 

  20. X.F. Sun, C.J. Wang, K.K. Deng, K.B. Nie, X.C. Zhang, and X.Y. Xiao: High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase. J. Alloys Compd. 732, 328 (2018).

    Article  CAS  Google Scholar 

  21. W. Yu, X. Wang, H. Zhao, Z. Huang, H. Zhai, and S. Xiong: Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J. Alloys Compd. 702, 199 (2017).

    Article  CAS  Google Scholar 

  22. X.Q. Zhang, L.H. Liao, N.H. Ma, and H.W. Wang: Effect of aging hardening on in situ synthesis magnesium matrix composites. Mater. Chem. Phys. 96, 9 (2006).

    Article  CAS  Google Scholar 

  23. M.Y. Gu, Z.G. Wu, Y.P. Jin, and M. Koçak: Effects of reinforcements on the aging response of a ZK60-based hybrid composite. Mater. Sci. Eng., A 272, 257 (1999).

    Article  Google Scholar 

  24. N.M. Chelliah, H. Singh, and M.K. Surappa: Microstructural evolution and strengthening behavior in in situ magnesium matrix composites fabricated by solidification processing. Mater. Chem. Phys. 194, 65 (2017).

    Article  CAS  Google Scholar 

  25. M. Gupta and M.K. Surappa: Effect of increase in heterogeneous nucleation sites on the aging behavior of 6061-SiC metal matrix composites. Mater. Res. Bull. 30, 1023 (1995).

    Article  CAS  Google Scholar 

  26. R.A. Fournelle and J.B. Clark: The genesis of the cellular precipitation reaction. Metall. Trans. 3, 2757 (1972).

    Article  CAS  Google Scholar 

  27. J.F. Huang, H.Y. Yu, Y.B. Li, H. Cui, J.P. He, and J.S. Zhang: Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthen effect. Mater. Des. 30, 440 (2009).

    Article  CAS  Google Scholar 

  28. D. Duly and Y. Brechet: Nucleation mechanism of discontinuous precipitation in Mg–Al alloys and relation with the morphology. Acta Metall. Mater. 42, 3035 (1994).

    Article  CAS  Google Scholar 

  29. K.N. Tu and D. Turnbull: Morphology of cellular precipitation of tin from lead-tin bicrystals. Acta Metall. 15, 369 (1967).

    Article  CAS  Google Scholar 

  30. K.N. Braszczyńska-Malik: Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloys Compd. 477, 870 (2009).

    Article  Google Scholar 

  31. Y.C. Yuan, A.B. Ma, J.H. Jiang, Y. Sun, F.M. Lu, L.Y. Zhang, and D. Song: Aging behaviour and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt%) alloy. J. Alloys Compd. 594, 182 (2014).

    Article  CAS  Google Scholar 

  32. S.H. Kim, J.U. Lee, Y.J. Kim, J.H. Bae, B.S. You, and S.H. Park: Accelerated precipitation behavior of cast Mg–Al–Zn alloy by grain refinement. J. Mater. Sci. Technol. 34, 265 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by “National Natural Science Foundation of China” (Grant Nos. 51671066, 51201006, 51471059, 51771178, and 51401200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Hu, X., Wang, X. et al. Aging behavior of the extruded SiCp-reinforced AZ91 Mg alloy composite. Journal of Materials Research 34, 335–343 (2019). https://doi.org/10.1557/jmr.2018.427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.427

Navigation