Skip to main content

Advertisement

Log in

Effect of Zr additions on crystal structures and mechanical properties of binary W–Zr alloys: A first-principles study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of zirconium alloying on the crystal structures and mechanical properties of binary tungsten–zirconium alloys is investigated in this study using the first-principles method. Firstly, we investigate the cell volumes, lattice constants, and formation energies of binary W1−xZrx (x = 0, 0.0625, 0.125, 0.1875, 0.25, and 0.5) alloys. It is shown that binary tungsten–zirconium alloys maintain BCC structures. When the concentration of zirconium atoms is lower than 12.5%, the structures of binary tungsten–zirconium alloys can be thermodynamically stable. The elastic constants of binary tungsten–zirconium alloys are calculated based on the optimized atomic lattice. Then, the elastic modulus and other mechanical parameters are deduced according to the relevant formulas. It is shown that the mechanical strength of binary tungsten–zirconium alloy decreases with an increasing concentration of zirconium atoms, which is lower than the mechanical strength of pure tungsten metal. However, the mechanical strength of binary tungsten–zirconium alloys is higher than that of pure zirconium metal. In addition, zirconium alloying can be effective in improving the ductility of pure tungsten metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. T. Tanabe, N. Noda, and H. Nakamura: Review of high Z materials for PSI applications. J. Nucl. Mater. 196, 11 (1992).

    Article  Google Scholar 

  2. C. Garcia-Rosales: Erosion processes in plasma-wall interactions. J. Nucl. Mater. 211, 202 (1994).

    Article  CAS  Google Scholar 

  3. V.A. Chuyanov: ITER EDA project status. J. Nucl. Mater. 233, 4 (1996).

    Article  Google Scholar 

  4. H. Kurishita, S. Kobayashi, K. Nakai, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, and M. Kawai: Current status of ultra-fine grained W–TiC development for use in irradiation environments. Phys. Scr. T128, 76–80 (2007).

    Article  CAS  Google Scholar 

  5. M.Z. Tokar, J.W. Coenen, V. Philipps, and Y. Ueda: Tokamak plasma response to droplet spraying from melted plasma-facing components. Nucl. Fusion 52, 013013 (2012).

    Article  CAS  Google Scholar 

  6. S.W. Zhang, Y. Wen, and H.J. Zhang: Low temperature preparation of tungsten nanoparticles from molten salt. Powder Technol. 253, 464–466 (2014).

    Article  CAS  Google Scholar 

  7. M.T. Kajioka, T. Sakamoto, K. Nakai, S. Kobayashi, H. Kurishita, S. Matsuo, and H. Arakawa: Effects of plastic working and MA atmosphere on microstructures of recrystallized W–1.1% TiC. J. Nucl. Mater. 417, 512–515 (2011).

    Article  CAS  Google Scholar 

  8. O. El-Atwani, J.A. Hinks, G. Greaves, S. Gonderman, T. Qiu, M. Efe, and J.P. Allain: In situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci. Rep. 4, 4716 (2014).

    Article  CAS  Google Scholar 

  9. A. Xu, C. Beck, D.E.J. Armstrong, K. Rajan, G.D.W. Smith, P.A.J. Bagot, and S.G. Roberts: Ion-irradiation-induced clustering in W–Re and W–Re–Os alloys: A comparative study using atom probe tomography and nanoindentation measurements. Acta Mater. 87, 121 (2015).

    Article  CAS  Google Scholar 

  10. Y.D. Kim, N.L. Oh, S.T. Oh, and I.H. Moon: Thermal conductivity of W–Cu composites at various temperatures. Mater. Lett. 51, 420 (2001).

    Article  CAS  Google Scholar 

  11. G.A. Dosovitskiy and S.V. Samoilenkov: Thermal expansion of Ni–W, Ni–Cr, and Ni–Cr–W alloys between room temperature and 800 °C. Int. J. Thermophys. 30, 1931 (2009).

    Article  CAS  Google Scholar 

  12. H.L. Ren, X.J. Liu, and J.G. Ning: Microstructure and mechanical properties of W–Zr reactive materials. Mater. Sci. Eng., A 660, 205 (2016).

    Article  CAS  Google Scholar 

  13. P.G. Luo, Z.C. Wang, C.L. Jiang, L. Mao, and Q. Li: Experimental study on impact-initiated characters of W/Zr energetic fragments. Mater. Des. 84, 72 (2015).

    Article  CAS  Google Scholar 

  14. H.M. Fu, N. Liu, A.M. Wang, H. Li, Z.W. Zhu, H.W. Zhang, H.F. Zhang, and Z.Q. Hu: High-temperature deformation behaviors of W/Zr based amorphous interpenetrating composite. Mater. Des. 58, 182 (2014).

    Article  CAS  Google Scholar 

  15. E. McCafferty: Graph theory and the passivity of binary alloys more examples. J. Electrochem. Soc. 151, B82 (2004).

    Article  CAS  Google Scholar 

  16. Z.M. Xie, T. Zhang, R. Liu, Q.F. Fang, S. Miao, X.P. Wang, and C.S. Liu: Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. Int. J. Refract. Met. Hard Mater. 51, 180 (2015).

    Article  CAS  Google Scholar 

  17. H.Y. Chen, L.M. Luo, J.B. Chen, X. Zan, X.Y. Zhu, Q. Xu, G.N. Luo, J.L. Chen, and Y.C. Wu: Effects of zirconium element on the microstructure and deuterium retention of W–Zr/Sc2O3 composites. Sci. Rep. 6, 32678 (2016).

    Article  CAS  Google Scholar 

  18. V.K. Kharchenko and V.V. Bukhanovskii: High-temperature strength of refractory metals, alloys and composite materials based on them. Part 1. tungsten, its alloys, and composites. Strength Mater. 44, 512 (2012).

    Article  CAS  Google Scholar 

  19. Z.M. Xie, R. Liu, Q.F. Fang, Y. Zhou, X.P. Wang, and C.S. Liu: Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. J. Nucl. Mater. 444, 175 (2014).

    Article  CAS  Google Scholar 

  20. S.L. Wen, K.H. He, H.N. Cui, M. Pan, Z. Huang, and Y. Zhao: Migration properties of mono-vacancy in W-4d/5d transition metal alloys. J. Alloys Compd. 728, 363 (2017).

    Article  CAS  Google Scholar 

  21. W. Setyawan and R.J. Kurtz: Effects of transition metals on the grain boundary cohesion in tungsten. Scr. Mater. 66, 558 (2012).

    Article  CAS  Google Scholar 

  22. X.S. Kong, X.B. Wu, Y.W. You, C.S. Liu, Q.F. Fang, J.L. Chen, G.N. Luo, and Z.G. Wang: First-principles calculations of transition metal-solute interactions with point defects in tungsten. Acta Mater. 66, 172 (2014).

    Article  CAS  Google Scholar 

  23. S.Q. Shi, S. Tanaka, and M. Kohyama: First-principles study of the tensile strength and failure of α-A1203(0001)/Ni(111) interfaces. Phys. Rev. B 76, 075431 (2007).

    Article  CAS  Google Scholar 

  24. S.Q. Shi, H. Zhang, X.Z. Ke, C.Y. Ouyang, M.S. Lei, and L.Q. Chen: First-principles study of lattice dynamics of LiFePO4. Phys. Lett. A 373, 4096 (2009).

    Article  CAS  Google Scholar 

  25. S.L. Shang, L.G. Hector, Jr., S.Q. Shi, Y. Qi, Y. Wang, and Z.K. Liu: Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory. Acta Mater. 60, 5204 (2012).

    Article  CAS  Google Scholar 

  26. X.K. Feng, S.Q. Shi, J.Y. Shen, S.L. Shang, M.Y. Yao, and Z.K. Liu: Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations. J. Nucl. Mater. 479, 461 (2016).

    Article  CAS  Google Scholar 

  27. Y.H. Yang, Q. Wu, Y.H. Cui, Y.C. Chen, S.Q. Shi, R.Z. Wang, and H. Yan: Elastic properties, defect thermodynamics, electrochemical window phase stability, and Li+ mobility of Li3PS4: Insights from first-principles calculations. ACS Appl. Mater. Interfaces 8, 25229 (2016).

    Article  CAS  Google Scholar 

  28. S.Q. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W.W. Ju, C.Y. Ouyang, and R.J. Xiao: Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016).

    Article  CAS  Google Scholar 

  29. G. Kresse and J. Hafner: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).

    Article  CAS  Google Scholar 

  30. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  31. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  32. Y. Wang and J.P. Perdew: Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44, 13298 (1991).

    Article  CAS  Google Scholar 

  33. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  34. S. Jin, Y.L. Liu, H.B. Zhou, Y. Zhang, and G.H. Lu: First-principles investigation on the effect of carbon on hydrogen trapping in tungsten. J. Nucl. Mater. 415, S709 (2011).

    Article  CAS  Google Scholar 

  35. B.C. Kittel: Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996).

    Google Scholar 

  36. D.C. Wallace: Thermoelastic theory of stressed crystals and higher-order elastic constants. Solid State Phys. 25, 301 (1970).

    Article  CAS  Google Scholar 

  37. J.J. Zhao, J.M. Winey, and Y.M. Gupta: First principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry. Phys. Rev. B 75, 094105 (2007).

    Article  CAS  Google Scholar 

  38. W. Voigt: über die Beziehungzwischen den beiden Elasticitäts constantenisotroper Körper. Ann. Phys. 38, 573 (1889).

    Article  Google Scholar 

  39. A. Reuss: Berechnung der Flieβgrenze von Mischkristallen auf Grupd der Plastizitäts bedingung für Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929).

    Article  CAS  Google Scholar 

  40. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).

    Article  Google Scholar 

  41. R. Hill: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357 (1963).

    Article  Google Scholar 

  42. Y.J. Hu, S.L. Shang, Y. Wang, K.A. Darling, B.G. Butler, L.J. Kecskes, and Z.K. Liu: Effects of alloying elements and temperature on the elastic properties of W-based alloys by first-principles calculations. J. Alloys Compd. 671, 267 (2016).

    Article  CAS  Google Scholar 

  43. P. Söderlind, O. Eriksson, J.M. Wills, and A.M. Boring: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 5844 (1993).

    Article  Google Scholar 

  44. S.S. Kushwah, M.P. Sharma, and Y.S. Tomar: An equation of state for molybdenum and tungsten. Phys. B 339, 193 (2003).

    Article  CAS  Google Scholar 

  45. H. Meradji, S. Drablia, and S. Ghemid: First-principles elastic constants and electronic structure of BP, BAs, and BSb. Phys. Status Solidi B 241, 2881 (2004).

    Article  CAS  Google Scholar 

  46. S.F. Pugh: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  47. Y.C. Lin, S.C. Luo, M.S. Chen, D.G. He, and C.Y. Zhao: Effects of pressure on anisotropic elastic properties and minimum thermal conductivity of D022-Ni3Nb phase: First-principles calculations. J. Alloys Compd. 688, 285 (2016).

    Article  CAS  Google Scholar 

  48. S. Kamran, K.Y. Chen, and L. Chen: Ab initio examination of ductility features of fcc metals. Phys. Rev. B 79, 024106 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was sponsored by the National Natural Science Foundation of China (No. 61762045), the Science and Technology Key Project of Jiangxi Provincial Department of Education (GJJ151146), the Natural Sciences Project of Jiangxi Science and Technology Department (20151BBE50079), and the Patent Transformation Project of Intellectual Property Office of Jiangxi Province (the application and popularization of the digital method to distinguish the direction of rotation photoelectric encoder in identification).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Jianfeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diyou, J., Li, X., Xuemei, H. et al. Effect of Zr additions on crystal structures and mechanical properties of binary W–Zr alloys: A first-principles study. Journal of Materials Research 34, 290–300 (2019). https://doi.org/10.1557/jmr.2018.426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.426

Navigation