Skip to main content
Log in

Development of sandwich-structured cobalt porphyrin/niobium molybdate nanosheets catalyst for oxygen reduction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the negatively charged [NbMoO6] nanosheets (NSs) were combined with positively charged [5,10,15,20-tetrakis (N-methylpyridinium-4-yl) porphyrinato cobalt] (CoTMPyP) to fabricate a sandwich-like CoTMPyP/[NbMoO6] NSs intercalated material by a direct self-assembling process. The results confirmed that CoTMPyP cations formed an inclined monolayer between [NbMoO6] NSs and the inclined angle was about 68°. The electrochemical properties of CoTMPyP/[NbMoO6] NSs composite were also investigated by cyclic voltammetry and liner sweep voltammetry, which showed the enhanced electron transferred ability. The CoTMPyP/[NbMoO6] NSs modified electrode displayed excellent electrocatalytic activity towards oxygen reduction with the reduction peak potential shifting from −0.681 to −0.235 V. And oxygen could be reduced to generate hydrogen peroxide with a two-electron process in neutral electrolytes. Moreover, the reduction peak current was linear relationship with the square root of scan rates, implying that the catalytic reaction depended on oxygen diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. K.N. Wood, R. O’Hayre, and S. Pylypenko: Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7, 1212 (2014).

    Article  CAS  Google Scholar 

  2. P. Drogui, S. Elmaleh, M. Rumeau, C. Bernard, and A. Rambaud: Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem. 31, 877 (2001).

    Article  CAS  Google Scholar 

  3. I. Yamanaka and T. Murayama: Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem., Int. Ed. 47, 1900 (2008).

    Article  CAS  Google Scholar 

  4. Y. Yang and H. Chang: Multi-scale porous graphene/activated carbon aerogel enables lightweight carbonaceous catalysts for oxygen reduction reaction. J. Mater. Res. 33, 1247 (2018).

    Article  CAS  Google Scholar 

  5. S. Tymen, A. Undisz, M. Rettenmayr, and A. Ignaszak: Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reduction. J. Mater. Res. 30, 2327 (2015).

    Article  CAS  Google Scholar 

  6. L. Dignard-Bailey, M.L. Trudeau, A. Joly, R. Schulz, G. Lalande, D. Guay, and J.P. Dodelet: Graphitization and particle size analysis of pyrolyzed cobalt phthalocyanine/carbon catalysts for oxygen reduction in fuel cells. J. Mater. Res. 9, 3203 (1994).

    Article  CAS  Google Scholar 

  7. H. Liang, C. Li, T. Chen, L. Cui, J. Han, Z. Peng, and J. Liu: Facile preparation of three-dimensional Co1−xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction. J. Power Sources 378, 699 (2018).

    Article  CAS  Google Scholar 

  8. H. Zhong, Y. Luo, S. He, P. Tang, D. Li, N. Alonso-Vante, and Y. Feng: Electrocatalytic cobalt nanoparticles interacting with nitrogen-doped carbon nanotube in situ generated from a metal-organic framework for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9, 2541 (2017).

    Article  CAS  Google Scholar 

  9. X. Yan, X. Xu, Q. Liu, J. Guo, L. Kang, and J. Yao: Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. J. Power Sources 389, 260 (2018).

    Article  CAS  Google Scholar 

  10. A.N. Oldacre, A.E. Friedman, and T.R. Cook: A self-assembled cofacial cobalt porphyrin prism for oxygen reduction catalysis. J. Am. Chem. Soc. 139, 1424 (2017).

    Article  CAS  Google Scholar 

  11. R. Jasinski: A new fuel cell cathode catalyst. Nature 201, 1212 (1964).

    Article  CAS  Google Scholar 

  12. X. Wang, B. Wang, J. Zhong, F. Zhao, N. Han, W. Huang, M. Zeng, J. Fan, and Y. Li: Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 9, 1497 (2016).

    Article  CAS  Google Scholar 

  13. J. Riquelme, K. Neira, J.F. Marco, P. Hermosilla-Ibáñez, W. Orellana, J.H. Zagal, and F. Tasca: Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochim. Acta 265, 547 (2018).

    Article  CAS  Google Scholar 

  14. B. Pan, J. Ma, X. Zhang, L. Liu, D. Zhang, J. Li, M. Yang, Z. Zhang, and Z. Tong: Sandwich-structured nanocomposite constructed by fabrication of exfoliation α-ZrP nanosheets and cobalt porphyrin utilized for electrocatalytic oxygen reduction. Microporous Mesoporous Mater. 223, 213 (2015).

    Article  CAS  Google Scholar 

  15. E. HaoYu, S. Cheng, K. Scott, and B. Logan: Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources 171, 275 (2007).

    Article  CAS  Google Scholar 

  16. J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong, and F. Bedioui: Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 254, 2755 (2010).

    Article  CAS  Google Scholar 

  17. A.V.D. Putten, A. Elzing, W. Visscher, and E. Barendrecht: Oxygen reduction on vacuum-deposited and adsorbed transition-metal phthalocyanine films. J. Electroanal. Chem. 214, 523 (1986).

    Article  Google Scholar 

  18. H. Tang, H. Yin, J. Wang, N. Yang, D. Wang, and Z. Tang: Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem. 125, 5695 (2013).

    Article  Google Scholar 

  19. P.K. Sonkar, K. Prakash, M. Yadav, V. Ganesan, M. Sankar, R. Gupta, and D.K. Yadav: Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: An approach for fuel cell improvement. J. Mater. Chem. A 5, 6263 (2017).

    Article  CAS  Google Scholar 

  20. J. Li, Y. Song, G. Zhang, H. Liu, Y. Wang, S. Sun, and X. Guo: Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium. Adv. Funct. Mater. 27, 1604356 (2017).

    Article  CAS  Google Scholar 

  21. A. Morozan, S. Campidelli, A. Filoramo, B. Jousselme, and S. Palacin: Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49, 4839 (2011).

    Article  CAS  Google Scholar 

  22. M. Wang, Z. Fan, L. Yi, J. Xu, X. Zhang, and Z. Tong: Construction of iron porphyrin/titanoniobate nanosheet sensors for the sensitive detection of nitrite. J. Mater. Sci. 53, 11403 (2018).

    Article  CAS  Google Scholar 

  23. B. Pan, J. Xu, X. Zhang, J. Li, M. Wang, J. Ma, L. Liu, D. Zhang, and Z. Tong: Electrostatic self-assembly behaviour of exfoliated Sr2Nb3O10 nanosheets and cobalt porphyrins: Exploration of non-noble electro-catalysts towards hydrazine hydrate oxidation. J. Mater. Sci. 53, 6494 (2018).

    Article  CAS  Google Scholar 

  24. A.J. Pearson: Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. J. Mater. Res. 32, 1798 (2017).

    Article  CAS  Google Scholar 

  25. C. Liu, Q. Wu, M. Ji, H. Zhu, H. Hou, Q. Yang, C. Jiang, J. Wang, L. Tian, J. Chen, and W. Hou: Constructing z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J. Alloys Compd. 723, 1121 (2017).

    Article  CAS  Google Scholar 

  26. C. Liu, H. Zhu, Y. Zhu, P. Dong, H. Hou, Q. Xu, X. Chen, X. Xi, and W. Hou: Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Appl. Catal., B 228, 54 (2018).

    Article  CAS  Google Scholar 

  27. M. Liu, Y. Hou, and X. Qu: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).

    Article  CAS  Google Scholar 

  28. X. Zhang, S. Li, C. Liu, D. Feng, T. Zhang, Z. Tong, and H. Inoue: Characterization of photoelectrochemical active intercalation compound of K4Nb6O17 with methylviologen. Microporous Mesoporous Mater. 117, 326 (2009).

    Article  CAS  Google Scholar 

  29. Z. Tong, S. Takagi, H. Tachibana, K. Takagi, and H. Inoue: Novel soft chemical method for optically transparent Ru(bpy)3-K4Nb6O17 thin film. J. Phys. Chem. B 109, 21612 (2005).

    Article  CAS  Google Scholar 

  30. Z. Tong, S. Takagi, T. Shimada, H. Tachibana, and H. Inoue: Photoresponsive multilayer spiral nanotubes: Intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate. J. Am. Chem. Soc. 128, 684 (2006).

    Article  CAS  Google Scholar 

  31. C. Liu, R. Han, H. Ji, T. Sun, J. Zhao, N. Chen, J. Chen, X. Guo, W. Hou, and W. Ding: S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 801 (2016).

    Article  CAS  Google Scholar 

  32. Z. Zhai, X. Yang, L. Xu, C. Hu, L. Zhang, W. Hou, and Y. Fan: Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale 4, 547 (2012).

    Article  CAS  Google Scholar 

  33. J. He, Q. Li, Y. Tang, P. Yang, A. Li, R. Li, and H. Li: Characterization of HNbMoO6, HNbWO6, and HTiNbO5 as solid acids and their catalytic properties for esterification reaction. Appl. Catal., A 443–444, 145 (2012).

    Article  CAS  Google Scholar 

  34. P. Shen, H. Zhang, H. Liu, J. Xin, L. Fei, X. Luo, R. Ma, and S. Zhang: Core–shell Fe3O4@SiO2@HNbMoO6 nanocomposites: New magnetically recyclable solid acid for heterogeneous catalysis. J. Mater. Chem. A 3, 3456 (2015).

    Article  CAS  Google Scholar 

  35. N.S.P. Bhuvanesh and J. Gopalakrishnan: Synthesis of rutile-related oxides, LiMMoO6 (M = Nb, Ta), and their proton derivatives. Intercalation chemistry of novel broensted acids, HMMoO6.cntdot.H2O. Inorg. Chem. 34, 3760 (1995).

    Article  CAS  Google Scholar 

  36. P. Hambright and E.B. Fleischer: Acid-base equilibria, kinetics of copper ion incorporation, and acid-catalyzed zinc ion displacement from the water-soluble porphyrin. alpha.,.beta.,.gamma.,.delta.-tetrakis (1-methyl-4-pyridinio) porphine tetraiodide. Inorg. Chem. 9, 1757 (1970).

    Article  CAS  Google Scholar 

  37. P. Wang, F. Zhou, Z. Wang, C. Lai, and X. Han: Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J. Electroanal. Chem. 750, 36 (2015).

    Article  CAS  Google Scholar 

  38. L. Liu, J. Ma, F. Shao, D. Zhang, J. Gong, and Z. Tong: A nanostructured hybrid synthesized by the intercalation of CoTMPyP into layered titanate: Direct electrochemistry and electrocatalysis. Electrochem. Commun. 24, 74 (2012).

    Article  CAS  Google Scholar 

  39. X. Zhang, M. Wang, D. Li, L. Liu, J. Ma, J. Gong, X. Yang, X. Xu, and Z. Tong: Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J. Solid State Electrochem. 17, 3177 (2013).

    Article  CAS  Google Scholar 

  40. A. Fuerte, A. Corma, M. Iglesias, E. Morales, and F. Sánchez: Approaches to the synthesis of heterogenised metalloporphyrins: Application of new materials as electrocatalysts for oxygen reduction. J. Mol. Catal. A: Chem. 246, 109 (2006).

    Article  CAS  Google Scholar 

  41. G. Zuo, H. Yuan, J. Yang, R. Zuo, and X. Lu: Study of orientation mode of cobalt-porphyrin on the surface of gold electrode by electrocatalytic dioxygen reduction. J. Mol. Catal. A: Chem. 269, 46 (2007).

    Article  CAS  Google Scholar 

  42. W. Huang, H. Zhong, D. Li, P. Tang, and Y. Feng: Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim. Acta 173, 575 (2015).

    Article  CAS  Google Scholar 

  43. H. Yin, H. Tang, D. Wang, Y. Gao, and Z. Tang: Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 6, 8288 (2012).

    Article  CAS  Google Scholar 

  44. H. Liu, L. Zhang, J. Zhang, D. Ghosh, J. Jung, B.W. Downing, and E. Whittemore: Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes. J. Power Sources 161, 743 (2006).

    Article  CAS  Google Scholar 

  45. R.R. Durand, Jr. and F.C. Anson: Catalysis of dioxygen reduction at graphite electrodes by an adsorbed cobalt(ii) porphyrin. J. Electroanal. Chem. Interfacial Electrochem. 134, 273 (1982).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Natural Science Fund of Jiangsu Province (BK20161294), HHIT Research Project (Z2015011), Lianyungang Science Project (CG1602) and University Science Research Project of Jiangsu Province (15KJB430004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Liu, Y., Zhang, X. et al. Development of sandwich-structured cobalt porphyrin/niobium molybdate nanosheets catalyst for oxygen reduction. Journal of Materials Research 33, 4199–4206 (2018). https://doi.org/10.1557/jmr.2018.394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.394

Navigation