Skip to main content

Advertisement

Log in

Laser additive manufacturing of powdered bismuth telluride

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi2Te3, and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi2Te3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. H.J. Goldsmid and R.W. Douglas: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954).

    Article  Google Scholar 

  2. G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman: Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998).

    Article  CAS  Google Scholar 

  3. G.S. Nolas, D.T. Morelli, and T.M. Tritt: Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89 (1999).

    CAS  Google Scholar 

  4. A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, and G. Ramanath: Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv. Mater. 18, 496 (2006).

    CAS  Google Scholar 

  5. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J-P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).

    CAS  Google Scholar 

  6. T.M. Tritt: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011).

    CAS  Google Scholar 

  7. Y. Tang, R. Hanus, S. Chen, and G.J. Snyder: Solubility design leading to high figure of merit in low-cost Ce–CoSb3 skutterudites. Nat. Commun. 6, 7584 (2015).

    CAS  Google Scholar 

  8. M. Beekman, D.T. Morelli, and G.S. Nolas: Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182 (2015).

    CAS  Google Scholar 

  9. B. Dörling, J.D. Ryan, J.D. Craddock, A. Sorrentino, A. El Basaty, A. Gomez, M. Garriga, E. Pereiro, J.E. Anthony, M.C. Weisenberger, A.R. Goñi, C. Müller, and M. Campoy-Quiles: Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites. Adv. Mater. 28, 2782 (2016).

    Google Scholar 

  10. C.J.L. Hermes and J.R. Barbosa, Jr.: Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers. Appl. Energy 91, 51 (2012).

    Google Scholar 

  11. M.A. Karri, E.F. Thacher, and B.T. Helenbrook: Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Convers. Manage. 52, 1596 (2011).

    CAS  Google Scholar 

  12. S. LeBlanc: Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustainable Mater. Technol. 1–2, 26 (2014).

    Google Scholar 

  13. A.F. Ioffe, L.S. Stil’bans, E.K. Iordanishvili, T.S. Stavitskaya, A. Gelbtuch, and G. Vineyard: Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12, 42 (1959).

    Google Scholar 

  14. T.C. Harman, P.J. Taylor, D.L. Spears, and M.P. Walsh: Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 29, L1 (2000).

    CAS  Google Scholar 

  15. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  16. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    CAS  Google Scholar 

  17. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).

    CAS  Google Scholar 

  18. G. Zhang, Q. Yu, W. Wang, and X. Li: Nanostructures for thermoelectric applications: Synthesis, growth mechanism, and property studies. Adv. Mater. 22, 1959 (2010).

    CAS  Google Scholar 

  19. K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner: Thermoelectric nanostructures: From physical model systems towards nanograined composites. Adv. Energy Mater. 1, 713 (2011).

    CAS  Google Scholar 

  20. G. Pennelli: Review of nanostructured devices for thermoelectric applications. Beilstein J. Nanotechnol. 5, 1268 (2014).

    Google Scholar 

  21. C.R. Deckard: U.S. Patent No. US4863538 A, Method and apparatus for producing parts by selective sintering (1986).

  22. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57, 133 (2012).

    CAS  Google Scholar 

  23. M. Schmid, A. Amado, and K. Wegener: Materials perspective of polymers for additive manufacturing with selective laser sintering. J. Mater. Res. 29, 1824 (2014).

    CAS  Google Scholar 

  24. A. Zocca, P. Colombo, C.M. Gomes, and J. Günster: Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98, 1983 (2015).

    CAS  Google Scholar 

  25. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2, 041101 (2015).

    Google Scholar 

  26. A. El-Desouky, A.L. Read, P.M. Bardet, M. Andre, and S. Leblanc: Selective laser melting of a bismuth telluride thermoelectric materials. In Proc Solid Free Symp, D. Bourell, ed. (Solid Freeform Fabrication Symposium, Austin, Texas, 2015), pp. 1043–1050.

  27. A. El-Desouky, M. Carter, M.A. Andre, P.M. Bardet, and S. LeBlanc: Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Mater. Lett. 185, 598 (2016).

    CAS  Google Scholar 

  28. A. El-Desouky, M. Carter, M. Mahmoudi, A. Elwany, and S. LeBlanc: Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. J. Manuf. Process. 25, 411 (2017).

    Google Scholar 

  29. Y. Mao, Y. Yan, K. Wu, H. Xie, Z. Xiu, J. Yang, Q. Zhang, C. Uher, and X. Tang: Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification. RSC Adv. 7, 21439 (2017).

    CAS  Google Scholar 

  30. K. Wu, Y. Yan, J. Zhang, Y. Mao, H. Xie, J. Yang, Q. Zhang, C. Uher, and X. Tang: Preparation of n-type Bi2Te3 thermoelectric materials by non-contact dispenser printing combined with selective laser melting. Phys. Status Solidi RRL 11, 1700067 (2017).

    Google Scholar 

  31. Y. Yan, H. Ke, J. Yang, C. Uher, and X. Tang: Fabrication and thermoelectric properties of n-type CoSb2.85Te0.15 using selective laser melting. ACS Appl. Mater. Interfaces 10, 13669 (2018).

    CAS  Google Scholar 

  32. F. Kim, B. Kwon, Y. Eom, J.E. Lee, S. Park, S. Jo, S.H. Park, B-S. Kim, H.J. Im, M.H. Lee, T.S. Min, K.T. Kim, H.G. Chae, W.P. King, and J.S. Son: 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 3, 301 (2018).

    CAS  Google Scholar 

  33. H.J. Goldsmid: Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577 (2014).

    CAS  Google Scholar 

  34. R. Sehr and L.R. Testardi: The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219 (1962).

    CAS  Google Scholar 

  35. H. Zhang, C-X. Liu, X-L. Qi, X. Dai, Z. Fang, and S-C. Zhang: Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009).

    CAS  Google Scholar 

  36. J. Martin, S. Erickson, G.S. Nolas, P. Alboni, T.M. Tritt, and J. Yang: Structural and transport properties of Ba8Ga16SixGe30−x clathrates. J. Appl. Phys. 99, 044903 (2006).

    Google Scholar 

  37. J. Martin and G.S. Nolas: Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K. Rev. Sci. Instrum. 87, 015105 (2016).

    Google Scholar 

  38. H.C.H. Ho, I. Gilbson, and W.L. Cheung: Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 89–90, 204 (1999).

    Google Scholar 

  39. J. Wilkes, Y. Hagedorn, W. Meiners, and K. Wissenbach: Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J. 19, 51 (2013).

    Google Scholar 

  40. P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov: Ceramic components manufacturing by selective laser sintering. Appl. Surf. Sci. 254, 989 (2007).

    CAS  Google Scholar 

  41. L.X. Liu, I. Marziano, A.C. Bentham, J.D. Litster, E.T. White, and T. Howes: Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm. 362, 109 (2008).

    CAS  Google Scholar 

  42. N. Batista, A. El-Desouky, J. Crandall, S. Wang, J. Yang, and S. LeBlanc: Informatics, Electron. Microsystems (TechConnect Briefs, Washington, District of Columbia, 2017); pp. 166–169.

    Google Scholar 

  43. W.M. Haynes: CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, Boca Raton, FL, 2014); pp. 4–52.

    Google Scholar 

  44. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J-P. Kruth: Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. Solid Freeform Fabr. Symp. Proc. 22, 484 (2011).

    Google Scholar 

  45. K. Monroy, J. Delgado, and J. Ciurana: Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process. Procedia Eng. 63, 361 (2013).

    CAS  Google Scholar 

  46. S. Katayama, Y. Kawahito, and M. Mizutani: Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys. Procedia 5, 9 (2010).

    CAS  Google Scholar 

  47. J.Y. Lee, S.H. Ko, D.F. Farson, and C.D. Yoo: Mechanism of keyhole formation and stability in stationary laser welding. J. Phys. D: Appl. Phys. 35, 1570 (2002).

    CAS  Google Scholar 

  48. C.B. Satterthwaite and R.W. Ure: Electrical and thermal properties of Bi2Te3. Phys. Rev. 108, 1164 (1957).

    CAS  Google Scholar 

  49. L.D. Zhao, B-P. Zhang, J-F. Li, H.L. Zhang, and W.S. Liu: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10, 651 (2008).

    CAS  Google Scholar 

  50. M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, M. Muhammed, G. Chen, C. Gatti, Y. Zhang, M. Rowe, M. Muhammed, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J. Mater. Chem. 22, 725 (2012).

    CAS  Google Scholar 

  51. C. Euvananont, N. Jantaping, and C. Thanachayanont: Effects of composition and preferred orientation on microstructure and thermoelectric properties of p-type (BixSb(1−x))2Te3 alloys. Curr. Appl. Phys. 11, S246 (2011).

    Google Scholar 

  52. H.J. Goldsmid: The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. 71, 633 (1958).

    CAS  Google Scholar 

  53. H. Zou, D.M. Rowe, and G. Min: Growth of p- and n-type bismuth telluride thin films by co-evaporation. J. Cryst. Growth 222, 82 (2001).

    CAS  Google Scholar 

  54. L.M. Goncalves, P. Alpuim, G. Min, D.M. Rowe, C. Couto, and J.H. Correia: Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications. Vacuum 82, 1499 (2008).

    CAS  Google Scholar 

  55. J-H. Kim, J-Y. Choi, J-M. Bae, M-Y. Kim, and T-S. Oh: Thermoelectric characteristics of n-type Bi2Te3 and p-type Sb2Te3 thin films prepared by co-evaporation and annealing for thermopile sensor applications. Mater. Trans. 54, 618 (2013).

    CAS  Google Scholar 

  56. F.I. Vasenin: Termoelektricheskie svoistva splavov sistemy vismut-tellur. Zh. Tekh. Fiz. 25, 397 (1955).

    CAS  Google Scholar 

  57. L. Ainsworth: Single crystal bismuth telluride. Proc. Phys. Soc., London, Sect. B 69, 606 (1956).

    Google Scholar 

  58. G.S. Nolas, J. Sharp, and H.J. Goldsmid: Thermoelectrics: Basic Principles and New Materials Developments (Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2001).

    Google Scholar 

  59. J.M. Schultz, J.P. McHugh, and W.A. Tiller: Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 33, 2443 (1962).

    CAS  Google Scholar 

  60. W.R. George, R. Sharples, and J.E. Thompson: The sintering of bismuth telluride. Proc. Phys. Soc. 74, 768 (1959).

    CAS  Google Scholar 

  61. R.G. Bernard: Processes involved in sintering. Powder Metall. 2, 86 (1959).

    Google Scholar 

  62. G.R. Miller and C-Y. Li: Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173 (1965).

    CAS  Google Scholar 

  63. J. Horák, K. Čermák, and L. Koudelka: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47, 805 (1986).

    Google Scholar 

  64. J. Horák, J. Navrátil, and Z. Starý: Lattice point defects and free-carrier concentration in Bi2+ xTe3 and Bi2+ xSe3 crystals. J. Phys. Chem. Solids 53, 1067 (1992).

    Google Scholar 

  65. P. Lošt’ák, Č. Drašar, D. Bachan, L. Beneš, and A. Krejčová: Defects in Bi2Te3−xSex single crystals. Radiat. Eff. Defects Solids 165, 211 (2010).

    Google Scholar 

  66. J. Bludská, I. Jakubec, Č. Drašar, P. Lošťák, and J. Horák: Structural defects in Cu-doped Bi2Te3 single crystals. Philos. Mag. 87, 325 (2007).

    Google Scholar 

  67. C. Drasar, P. Lostak, and C. Uher: Doping and defect structure of tetradymite-type crystals. J. Electron. Mater. 39, 2162 (2010).

    CAS  Google Scholar 

  68. A. Hashibon and C. Elsässer: First-principles density functional theory study of native point defects in Bi2Te3. Phys. Rev. B 84, 144117 (2011).

    Google Scholar 

  69. D-H. Kim and G-H. Lee: Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering. Mater. Sci. Eng., B 131, 106 (2006).

    CAS  Google Scholar 

  70. D.A. Wright: Thermoelectric properties of bismuth telluride and its alloys. Nature 181, 834 (1958).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge support from Oak Ridge National Laboratory Manufacturing Demonstration Facility RAMP-UP (Subcontract 4000145175), Virginia Center for Innovative Technology (CRCF Award MF16-020-En), and GWU University Facilitating Fund. We are especially grateful to James Ridenour and Dr. Christopher L. Cahill for equipment use and assistance with the XRD work, and we wish to acknowledge Linseis Inc. for the assistance of characterization of thermal and electrical properties. G.S.N. acknowledges support from the National Science Foundation Grant No. DMR-1748188. D.H. acknowledges support from the II-VI Foundation Block-Gift Program. Electron microscopy was conducted in The George Washington University Nanofabrication and Imaging Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haidong Zhang or Saniya LeBlanc.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hobbis, D., Nolas, G.S. et al. Laser additive manufacturing of powdered bismuth telluride. Journal of Materials Research 33, 4031–4039 (2018). https://doi.org/10.1557/jmr.2018.390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.390

Navigation