Skip to main content
Log in

High photoresponsivity and light-induced carrier conversion in RGO/TSCuPc hybrid phototransistors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO) and its composites have a great potential for their applications in optoelectronic devices. In particular, small molecules can be used for tailoring optoelectronic properties of RGO. Here, we report the fabrication of a hybrid RGO/tetrasulfonate salt of the copper phthalocyanine (RGO/TSCuPc) nanocomposite phototransistor. The device shows p-type transistor behavior in the dark which changes to ambipolar behavior at the lower light intensity, and then shows a complete n-type property at the higher light intensity. The photoresponsivity of the device can be tuned by gate voltages, and the best photoresponsivity is recorded to be as high as ∼4.6 A/W for positive gate voltage and ∼6.3 A/W with a negative sign for negative gate voltage under solar light irradiation. The observations suggest that the photogenerated free electrons of TSCuPc molecules can be injected efficiently onto RGO sheets, resulting in increases in electron conduction and hole quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178 (2011).

    CAS  Google Scholar 

  2. X. Wan, Y. Huang, and Y. Chen: Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 45, 598 (2012).

    CAS  Google Scholar 

  3. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 41 (2015).

    CAS  Google Scholar 

  4. O.C. Compton, B. Jain, D.A. Dikin, A. Abouimrane, K. Amine, and S.T. Nguyen: Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5, 4380 (2011).

    CAS  Google Scholar 

  5. Z. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, and J.M. Kikkawa: Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).

    Google Scholar 

  6. V.C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25 (2009).

    CAS  Google Scholar 

  7. O.C. Compton and S.T. Nguyen: Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711 (2010).

    CAS  Google Scholar 

  8. D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, and M. Chhowalla: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413 (2016).

    CAS  Google Scholar 

  9. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, and M. Chhowalla: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505 (2010).

    CAS  Google Scholar 

  10. H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng: Thin film field‐effect phototransistors from bandgap‐tunable, solution‐processed, few‐layer reduced graphene oxide films. Adv. Mater. 22, 4872 (2010).

    CAS  Google Scholar 

  11. S. Ghosh, B.K. Sarker, A. Chunder, L. Zhai, and S.I. Khondaker: Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 96, 163109 (2010).

    Google Scholar 

  12. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).

    CAS  Google Scholar 

  13. Y.Q. Sun, Q.O. Wu, and G.Q. Shi: Graphene based new energy materials. Energy Environ. Sci. 4, 1113 (2011).

    CAS  Google Scholar 

  14. D. Joung and S.I. Khondaker: Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction. Phys. Rev. B 86, 235423 (2012).

    Google Scholar 

  15. Y. Cao, J. Zhu, J. Xu, and J. He: Tunable near-infrared photovoltaic and photoconductive properties of reduced graphene oxide thin films by controlling the number of reduced graphene oxide bilayers. Carbon 77, 1111 (2014).

    CAS  Google Scholar 

  16. Q. Liu, Z.F. Liu, X.Y. Zhang, N. Zhang, L.Y. Yang, S.G. Yin, and Y.S. Chen: Organic photovoltaic cells based on an accepto of soluble graphene. Appl. Phys. Lett. 92, 223303 (2008).

    Google Scholar 

  17. J.G. Radich and P.V. Kamat: Origin of reduced graphene oxide enhancements in electrochemical energy storage. ACS Catal. 2, 807 (2012).

    CAS  Google Scholar 

  18. Q. Liu, Z.F. Liu, X.Y. Zhang, L.Y. Yang, N. Zhang, G.L. Pan, S.G. Yin, Y.S. Chen, and J. Wei: Polymer photovoltaic cells based on solution‐processable graphene and P3HT. Adv. Funct. Mater. 19, 894 (2009).

    CAS  Google Scholar 

  19. C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, and C.M. Li: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed. 49, 3014 (2010).

    CAS  Google Scholar 

  20. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu: A facile one‐step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 22, 103 (2010).

    CAS  Google Scholar 

  21. H. Chang and H. Wu: Graphene‐based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 23, 1984 (2013).

    CAS  Google Scholar 

  22. J. Yang, M. Heo, H.J. Lee, S-M. Park, J.Y. Kim, and H.S. Shin: Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires. ACS Nano 5, 8365 (2011).

    CAS  Google Scholar 

  23. J. Chen, F. Xu, J. Wu, K. Qasim, Y. Zhou, W. Lei, L.T. Sun, and Y. Zhang: Flexible photovoltaic cells based on a graphene–CdSe quantum dot nanocomposite. Nanoscale 4, 441 (2012).

    CAS  Google Scholar 

  24. A. Chunder, T. Pal, S.I. Khondaker, and L. Zhai: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 15129 (2010).

    CAS  Google Scholar 

  25. S. Ghosh, T. Pal, D. Joung, and S.I. Khondaker: One pot synthesis of RGO/PbS nanocomposite and its near infrared photoresponse study. Appl. Phys. A 107, 995 (2012).

    CAS  Google Scholar 

  26. X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu, and L. Liu: Aqueous-processable noncovalent chemically converted graphene–quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638 (2010).

    CAS  Google Scholar 

  27. P. Das, K. Chakraborty, S. Chakrabarty, S. Ghosh, and T. Pal: Reduced graphene oxide—Zinc phthalocyanine composites as fascinating material for optoelectronic and photocatalytic applications. ChemistrySelect 2, 3297 (2017).

    CAS  Google Scholar 

  28. S. Ando and A. Kimachi: Correlation image sensor: Two-dimensional matched detection of amplitude-modulated light. IEEE Trans. Electron Devices 50, 2059 (2003).

    Google Scholar 

  29. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens: Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366 (2017).

    CAS  Google Scholar 

  30. T. Pal, M. Arif, and S.I. Khondaker: High performance organic phototransistor based on regioregular poly(3-hexylthiophene). Nanotechnology 21, 325201 (2010).

    Google Scholar 

  31. N.M. Johnson and A. Chiang: Highly photosensitive transistors in single‐crystal silicon thin films on fused silica. Appl. Phys. Lett. 45, 1102 (1984).

    CAS  Google Scholar 

  32. Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada: Amorphous silicon phototransistors. Appl. Phys. Lett. 56, 650 (1990).

    CAS  Google Scholar 

  33. C.S. Choi, H.S. Kang, W.Y. Choi, H.J. Kim, W.J. Choi, D.H. Kim, K.C. Jang, and K.S. Seo: High optical responsivity of InAlAs–InGaAs metamorphic high-electron mobility transistor on GaAs substrate with composite channels. IEEE Photonics Technol. Lett. 15, 846 (2003).

    Google Scholar 

  34. S.R. Forrest: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).

    CAS  Google Scholar 

  35. A.J. Heeger: Semiconducting and metallic polymers: The fourth generation of polymeric materials (nobel lecture). Angew. Chem., Int. Ed. 40, 2591 (2001).

    CAS  Google Scholar 

  36. A. Facchetti, M.H. Yoon, and T.J. Marks: Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705 (2005).

    CAS  Google Scholar 

  37. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P.M. Ajayan, F.H.L. Koppens, P. Nordlander, and N.J. Halas: Plasmon-induced doping of graphene. ACS Nano 6, 10222 (2012).

    CAS  Google Scholar 

  38. Z. Wang, J. Zhang, R. Xing, J. Yuan, D. Yan, and Y. Han: Micropatterning of organic semiconductor microcrystalline materials and ofet fabrication by “hot lift off”. J. Am. Chem. Soc. 125, 15278 (2003).

    CAS  Google Scholar 

  39. Z. Bao, A.J. Lovinger, and A. Dodabalapur: Organic field‐effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 69, 3066 (1996).

    CAS  Google Scholar 

  40. R.A. Hatton, N.P. Blanchard, V. Stolojan, A.J. Miller, and S.R.P. Silva: Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films. Langmuir 23, 6424 (2007).

    CAS  Google Scholar 

  41. D. Joung, A. Chunder, L. Zhai, and S.I. Khondaker: High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21, 165202 (2010).

    Google Scholar 

  42. H.J. Shin, S.M. Kim, S.M. Yoon, A. Benayad, K.K. Kim, S.J. Kim, H.K. Park, J.Y. Choi, and Y.H. Lee: Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 130, 2062 (2008).

    CAS  Google Scholar 

  43. D. Joung, A. Chunder, L. Zhai, and S.I. Khondaker: Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl. Phys. Lett. 97, 093105 (2010).

    Google Scholar 

  44. L. Zhen, L. Shang, M. Liu, D. Tu, Z. Ji, X. Liu, G. Liu, J. Liu, and H. Wang: Light-induced hysteresis characteristics of copper phthalocyanine organic thin-film transistors. Appl. Phys. Lett. 93, 203302 (2008).

    Google Scholar 

  45. D. Zhang, L. Gan, Y. Cao, Q. Wang, L. Qi, and X. Guo: Understanding charge transfer at pbs‐decorated graphene surfaces toward a tunable photosensor. Adv. Mater. 24, 2715 (2012).

    CAS  Google Scholar 

  46. K. Kim, H.J. Park, B-C. Woo, K.J. Kim, G.T. Kim, and W.S. Yun: Electric property evolution of structurally defected multilayer graphene. Nano Lett. 8, 3092 (2008).

    CAS  Google Scholar 

  47. Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, and K. Mu¨llen: Composites of graphene with large aromatic molecules. Adv. Funct. Mater. 18, 3191 (2009).

    Google Scholar 

  48. S. Ryu, L. Liu, S. Berciaud, Y-J. Yu, H. Liu, P. Kim, G.W. Flynn, and L.E. Brus: Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10, 4944 (2010).

    CAS  Google Scholar 

  49. K. Chakraborty, S. Chakrabarty, P. Das, S. Ghosh, and T. Pal: UV-assisted synthesis of reduced graphene oxide zinc sulfide composite with enhanced photocatalytic activity. Mater. Sci. Eng., B 204, 8 (2016).

    CAS  Google Scholar 

  50. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, and H. Dai: Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939 (2009).

    CAS  Google Scholar 

  51. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai: N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768 (2009).

    CAS  Google Scholar 

  52. D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.M. Lin, G.S. Tulevski, J.C. Tsang, and P. Avouris: Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett. 9, 388 (2009).

    CAS  Google Scholar 

  53. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami: Charged-impurity scattering in graphene. Nat. Phys. 4, 377 (2008).

    CAS  Google Scholar 

  54. K.M. McCreary, K. Pi, A.G. Swartz, W. Han, W. Bao, C.N. Lau, F. Guinea, M.I. Katsnelson, and R.K. Kawakami: Effect of cluster formation on graphene mobility. Phys. Rev. B 81, 115453 (2010).

    Google Scholar 

  55. K. Pi, K.M. McCreary, W. Bao, W. Han, Y.F. Chiang, Y. Li, S.W. Tsai, C.N. Lau, and R.K. Kawakami: Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 80, 075406 (2009).

    Google Scholar 

  56. S. Pei and H-M. Cheng: The reduction of graphene oxide. Carbon 50, 3210 (2012).

    CAS  Google Scholar 

  57. B-S. Kong, J. Geng, and H-T. Jung: Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun., 0, 2174 (2009).

    CAS  Google Scholar 

  58. S. Liu, J. Li, Q. Shen, Y. Cao, X. Guo, G. Zhang, C. Feng, J. Zhang, Z. Liu, M.L. Steigerwald, D. Xu, and C. Nuckolls: Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. Angew. Chem., Int. Ed. 48, 4759 (2009).

    CAS  Google Scholar 

  59. H. Zhang, X. Guo, J. Hui, S. Hu, W. Xu, and D. Zhu: Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors. Nano Lett. 11, 4939 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanusri Pal or Saiful I. Khondaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, T., Joung, D., Ghosh, S. et al. High photoresponsivity and light-induced carrier conversion in RGO/TSCuPc hybrid phototransistors. Journal of Materials Research 33, 3999–4006 (2018). https://doi.org/10.1557/jmr.2018.370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.370

Navigation