Skip to main content
Log in

The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biodegradable poly(lactide acid) (PLA) has been well-studied as a shape memory polymer in recent years, but the brittleness and relatively high Tg limit its applications. In this study, a series of PLA/poly(ethylene glycol) (PEG) blends were manufactured by using the solvent evaporation method. The thermal behaviors, morphology, hydrophilicity, and mechanical properties of the samples with different contents of PEG have been experimentally studied by differential scanning calorimetry, scanning electronic microscopy, water contact angle, dynamic mechanical analysis, and tensile test. Furthermore, the influence of PEG on the shape memory properties under different loading conditions including the stretch strain, recovery temperature, deformation temperature, and tensile rate were explored systematically. Experimental results reveal that introduction of appropriate contents of the plasticizer PEG into the PLA/PEG systems results in the significant improvement of morphology, hydrophilicity, and mechanical properties while the high shape memory properties are still retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. S-M. Lai, W-L. Wu, and Y-J. Wang: Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J. Polym. Res. 23, 99 (2016). https://doi.org/10.1007/s10965-016-0993-6

    Article  Google Scholar 

  2. S. Cai, Y-C. Sun, J. Ren, and H.E. Naguib: Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect. J. Mater. Chem. B 5, 8845 (2017). https://doi.org/10.1039/C7TB02068F

    Article  CAS  Google Scholar 

  3. H. Lv, J. Leng, Y. Liu, and S. Du: Shape-memory polymer in response to solution. Adv. Eng. Mater. 10, 592 (2008). https://doi.org/10.1002/adem.200800002

    Article  Google Scholar 

  4. M. Sabzi, M. Babaahmadi, and M. Rahnama: Thermally and electrically triggered triple-shape memory behavior of poly(vinyl acetate)/poly(lactic acid) due to graphene-induced phase separation. ACS Appl. Mater. Interfaces 9, 24061 (2017). https://doi.org/10.1021/acsami.7b02259

    Article  CAS  Google Scholar 

  5. N. Khalili, H. Asif, and H.E. Naguib: Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties. Smart Mater. Struct. 27, 055002 (2018). https://doi.org/10.1088/1361-665X/aab417

    Article  Google Scholar 

  6. H. Xie, M.J. He, X.Y. Deng, L. Du, C.J. Fan, K.K. Yang, and Y.Z. Wang: Design of poly(L-lactide)–poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups. ACS Appl. Mater. Interfaces 8, 9431 (2016). https://doi.org/10.1021/acsami.6b00704

    Article  CAS  Google Scholar 

  7. B.K. Kim: Shape memory polymers and their future developments. EXPRESS Polym. Lett. 2, 614 (2008). https://doi.org/10.3144/expresspolymlett.2008.73

    Article  Google Scholar 

  8. W. Xu, S. Wu, G.P. Balamurugan, M.R. Thompson, F.A. Brandys, and K.E. Nielsen: Evaluating shape memory behavior of polymer under deep-drawing conditions. Polym. Test. 62, 295 (2017). https://doi.org/10.1016/j.polymertesting.2017.07.009

    Article  CAS  Google Scholar 

  9. J. Karger-Kocsis: Biodegradable polyester-based shape memory polymers: Concepts of (supra)molecular architecturing. EXPRESS Polym. Lett. 8, 397 (2014). https://doi.org/10.3144/expresspolymlett.2014.44

    Article  Google Scholar 

  10. F.S. Senatov, M.Y. Zadorozhnyy, K.V. Niaza, V.V. Medvedev, S.D. Kaloshkin, N.Y. Anisimova, M.V. Kiselevskiy, and K-C. Yang: Shape memory effect in 3D-printed scaffolds for self-fitting implants. Eur. Polym. J. 93, 222 (2017). https://doi.org/10.1016/j.eurpolymj.2017.06.011

    Article  CAS  Google Scholar 

  11. W. Zhao, L. Liu, X. Lan, B. Su, J. Leng, and Y. Liu: Adaptive repair device concept with shape memory polymer. Smart Mater. Struct. 26, 025027 (2017). https://doi.org/10.1088/1361-665X/aa5595

    Article  Google Scholar 

  12. H. Wei, Q. Zhang, Y. Yao, L. Liu, Y. Liu, and J. Leng: Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces 9, 876 (2017). https://doi.org/10.1021/acsami.6b12824

    Article  CAS  Google Scholar 

  13. G.T. Carroll, J.R. Lancaster, N.J. Turro, J.T. Koberstein, and A. Mammana: Electroless deposition of nickel on photografted polymeric microscale patterns. Macromol. Rapid Commun. 38, 1600564 (2017). https://doi.org/10.1002/marc.201600564

    Article  Google Scholar 

  14. H. Tsuji: Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569 (2005). https://doi.org/10.1002/mabi.200500062

    Article  CAS  Google Scholar 

  15. C.M. Yakacki, R. Shandas R, C. Lanning, B. Rech, A. Eckstein, and K. Gall: Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28, 2255 (2007). https://doi.org/10.1016/j.biomaterials.2007.01.030

    Article  CAS  Google Scholar 

  16. A. Gremare, V. Guduric, R. Bareille, V. Heroguez, S. Latour, N. L’Heureux, J.C. Fricain, S. Catros, and D. Le Nihouannen: Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res., Part A 106, 887 (2018). https://doi.org/10.1002/jbm.a.36289

    Article  CAS  Google Scholar 

  17. T.I. Hwang, B. Maharjan, A.P. Tiwari, S. Lee, M.K. Joshi, C.H. Park, and C.S. Kim: Facile fabrication of spongy nanofibrous scaffold for tissue engineering applications. Mater. Lett. 219, 119 (2018). https://doi.org/10.1016/j.matlet.2018.02.040

    Article  CAS  Google Scholar 

  18. K. Wei, Y. Peng, Z. Qu, Y. Pei, and D. Fang: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio. Int. J. Solids Struct. 150, 255 (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.018

    Article  Google Scholar 

  19. M.C. Tanzi, S. Bozzini, G. Candiani, A. Cigada, L. De Nardo, S. Fare, F. Ganazzoli, D. Gastaldi, M. Levi, P. Metrangolo, F. Migliavacca, R. Osellame, P. Petrini, G. Raffaini, G. Resnati, P. Vena, S. Vesentini, and P. Zunino: Trends in biomedical engineering: Focus on smart bio-materials and drug delivery. J. Appl. Biomater. Biomech. 9, 87 (2011).

    CAS  Google Scholar 

  20. X. Zhang, M.A. Geven, D.W. Grijpma, T. Peijs, and J.E. Gautrot: Tunable and processable shape memory composites based on degradable polymers. Polymer 122, 323 (2017). https://doi.org/10.1016/j.polymer.2017.06.066

    Article  CAS  Google Scholar 

  21. W. Zhang, L. Chen, and Y. Zhang: Study on polylactide/poly(ether block amide) composite biomaterials and shape-memory effect. Mater. Sci. Forum 610–613, 1312 (2009). https://doi.org/10.4028/www.scientific.net/MSF.610-613.1312

    Article  Google Scholar 

  22. S.K. Dogan, S. Boyacioglu, M. Kodal, O. Gokce, and G. Ozkoc: Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: Effects of compatibilization. J. Mech. Behav. Biomed. Mater. 71, 349 (2017). https://doi.org/10.1016/j.jmbbm.2017.04.001

    Article  CAS  Google Scholar 

  23. I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J.M. Kenny, and L. Peponi: Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 132, 97 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.03.037

    Article  CAS  Google Scholar 

  24. R.M. Rasal, A.V. Janorkar, and D.E. Hirt: Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338 (2010). https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  25. I. Pillin, N. Montrelay, and Y. Grohens: Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 47, 4676 (2006). https://doi.org/10.1016/j.polymer.2006.04.013

    Article  CAS  Google Scholar 

  26. K.M. Choi, S.W. Lim, M.C. Choi, D.H. Han, and C.S. Ha: Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol). Macromol. Res. 22, 1312 (2014). https://doi.org/10.1007/s13233-014-2182-y

    Article  CAS  Google Scholar 

  27. B.W. Chieng, N.A. Ibrahim, M.Z.Y. Wan, and M.Z. Hussein: Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. J. Appl. Polym. Sci. 130, 4576 (2013).

    CAS  Google Scholar 

  28. M. Bijarimi, S. Ahmad, R. Rasid, M.A. Khushairi, and M. Zakir: Poly(lactic acid)/poly(ethylene glycol) blends: Mechanical, thermal and morphological properties. AIP Conference Proceedings 1727, 020002 (2016). https://doi.org/10.1063/1.4945957

    Article  Google Scholar 

  29. M. Barmouz and A. Hossein Behravesh: Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: Analytical and experimental assessment. Composites, Part A 101, 160 (2017). https://doi.org/10.1016/j.compositesa.2017.06.014

    Article  CAS  Google Scholar 

  30. W. Liu, R. Zhang, M. Huang, X. Dong, W. Xu, N. Ray, and J. Zhu: Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104, 115 (2016). https://doi.org/10.1016/j.polymer.2016.09.079

    Article  CAS  Google Scholar 

  31. T. Shen, M. Lu, D. Zhou, and L. Liang: Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly(lactic acid)/poly(ethylene glycol) blends. Iran. Polym. J. 21, 317 (2012). https://doi.org/10.1007/s13726-012-0031-4

    Article  CAS  Google Scholar 

  32. T. Goryczka and B. Szaraniec: Characterization of polylactide layer deposited on Ni–Ti shape memory. J. Mater. Eng. Perform. 23, 2682 (2014). https://doi.org/10.1007/s11665-014-1038-0

    Article  CAS  Google Scholar 

  33. T. Phaechamud and S. Chitrattha: Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane. Mater. Sci. Eng., C 61, 744 (2016).

    Article  CAS  Google Scholar 

  34. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel: Thermal and mechanical properties of plasticized poly(l-lactic acid). J. Appl. Polym. Sci. 90, 1731 (2003).

    Article  CAS  Google Scholar 

  35. N. Cai, Q. Dai, Z. Wang, X. Luo, Y. Xue, and F. Yu: Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds. Fibers Polym. 15, 2544 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to sincerely thank the financial support from the National Natural Science Foundation of China (11502238 and 11372287), the International Science & Technology Cooperation Program of China (Grant No. 2015DFA30550), the China Postdoctoral Science Foundation (Grant Nos. 2016M592307 and 2017M610460), the Opening Fund of National Center for International Research of Micro-nano Molding Technology (MMT2017-05), and the International Science & Technology Cooperation Program of Henan (172102410076 and 173102410062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ma, J., Lv, Z. et al. The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends. Journal of Materials Research 33, 4101–4112 (2018). https://doi.org/10.1557/jmr.2018.359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.359

Navigation