Skip to main content
Log in

Tunable blue-green emission from ZnS(Ag) nanostructures grown by hydrothermal synthesis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the synthesis and optical properties of pure ZnS and Ag doped ZnS nanostructures. ZnS(Ag) was synthesized by using the hydrothermal technique and later annealed at different temperatures under vacuum conditions. It was observed that the photoluminescence (PL) emission from the ZnS(Ag) nanostructures can be easily tuned from the blue (445 nm) to green (530 nm) region of visible light by varying the annealing temperature. This tunability has been attributed to the introduction of excess sulfur vacancy states, which is evident from the PL excitation spectra. This observed change in the PL emission wavelength can be highly beneficial in the imaging screens where ZnS is regularly used and can be easily interfaced with the silicon photodiodes showing maximum sensitivity at 550 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. P. Sunghoon, A. Soyeon, K. Hyunsung, S. Lee, and C. Lee: Synthesis, structure and UV-enhanced gas sensing properties of Au-functionalized ZnS nano-wires. Sens. Actuators, B 188, 1270–1276 (2013).

    Article  Google Scholar 

  2. A.K. Kole, C.S. Tiwary, and P. Kumbhakar: Morphology controlled synthesis of wurtzite ZnS nanostructures through simple hydrothermal method and observation of white light emission from ZnO obtained by annealing the synthesized ZnS nanostructures. J. Mater. Chem. C 2, 4338 (2014).

    Article  Google Scholar 

  3. S.S. Boxi and S. Paria: Effect of silver doping on TiO2, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light. RSC Adv. 4, 37752 (2014).

    Article  CAS  Google Scholar 

  4. Y. Liang, H. Liang, X. Xiaoa, and S. Hark: The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection. J. Mater. Chem. 22, 1199–1205 (2012).

    Article  CAS  Google Scholar 

  5. J.S. McCloy, M. Bliss, B. Miller, Z. Wang, and S. Stave: Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS. J. Lumin. 157, 416–423 (2015).

    Article  CAS  Google Scholar 

  6. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg: ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011).

    Article  CAS  Google Scholar 

  7. Z. Li, B. Liu, X. Li, S. Yu, L. Wang, Y. Hou, Y. Zou, M. Yao, Q. Li, B. Zou, G. Zou, G. Wang, and Y. Liu: Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property. Nanotechnol. 18, 255602 (2007).

    Article  Google Scholar 

  8. R. Mendil, Z.B. Ayadi, and K. Djessas: Effect of solvent medium on the structural, morphological and optical properties of ZnS nanoparticles synthesized by solvothermal route. J. Alloys Compd. 678, 87–92 (2016).

    Article  CAS  Google Scholar 

  9. B.Y. Geng, X.W. Liu, Q.B. Du, X.W. We, and L.D. Zhang: Structure and optical properties of periodically twinned ZnS nanowires. Appl. Phys. Lett. 88, 163104 (2006).

    Article  Google Scholar 

  10. N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanbe, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida: Fluorescence and EPR characteristics of Mn2+-doped ZnS nanocrystals prepared by aqueous colloidal method. J. Phys. Chem. B 103, 754 (1999).

    Article  CAS  Google Scholar 

  11. K.B. Lin and Y.H. Su: Photoluminescence of Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles applied in Bio-LED. Appl. Phys. B 113, 351–359 (2013).

    Article  CAS  Google Scholar 

  12. L. Lu, W. Zeng, S. Hu, D. Chen, J. Lei, and N. Ren: Polarization-dependent fluorescence of CdSe/ZnS quantum dots coupling to a single gold-silver alloy nanotube. J. Alloys Compd. 731, 753–759 (2017).

    Article  Google Scholar 

  13. X.J. Xu, L.F. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie, and X. Fang: Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photo- activity. Adv. Funct. Mater. 25, 445–454 (2015).

    Article  CAS  Google Scholar 

  14. E. Hao, Y. Sun, B. Yang, X. Zhang, J. Liu, and J. Shen: Synthesis and photophysical properties of ZnS colloidal particles doped with silver. J. Colloid Interface Sci. 204, 369–373 (1998).

    Article  CAS  Google Scholar 

  15. Q. Pan, D. Yang, Y. Zhao, Z. Ma, G. Dong, and J. Qiu: Facile hydrothermal synthesis of Mn doped ZnS nanocrystals and luminescence properties investigations. J. Alloys Compd. 579, 300–304 (2013).

    Article  CAS  Google Scholar 

  16. J-C. Lee and D-H. Park: Self-defects properties of ZnS with sintering temperature. Mater. Lett. 57, 2872–2878 (2003).

    Article  CAS  Google Scholar 

  17. W. Zhang, X. Zeng, H. Liu, and J. Lu: Synthesis and investigation of blue and green emissions of ZnS ceramics. J. Lumin. 134, 498–503 (2013).

    Article  CAS  Google Scholar 

  18. P. Yang, M. Lu, D. Xu, D.L. Yuan, and G.J. Zhou: Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+. Chem. Phys. Lett. 336, 76–80 (2001).

    Article  CAS  Google Scholar 

  19. C. Ye, X. Fang, G. Li, and L. Zhang: Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004).

    Article  CAS  Google Scholar 

  20. S.A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S.K. Kulkarni: Ethylenediamine-mediated wurtzite phase formation in ZnS. Cryst. Growth Des. 13, 1369–1376 (2013).

    Article  CAS  Google Scholar 

  21. M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldiab, and A. Rossiab: Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5, 75953–75963 (2015).

    Article  CAS  Google Scholar 

  22. G. Hota, S.B. Idage, and K.C. Khilar: Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique. Colloids Surf., A 293, 5–12 (2007).

    Article  CAS  Google Scholar 

  23. S. Pan, X. Liu, and X. Wang: Preparation of Ag2S–Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity. Mater. Charact. 62, 1094–1101 (2011).

    Article  CAS  Google Scholar 

  24. W. Becker and A.J. Bard: Photoluminescence and photoinduced oxygen adsorption of colloidal Zinc Sulfide dispersions. J. Phys. Chem. 87, 4888–4893 (1983).

    Article  CAS  Google Scholar 

  25. D. Denzler, M. Olschewski, and K. Sattler: Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841–2845 (1998).

    Article  CAS  Google Scholar 

  26. W.Q. Peng, G.W. Cong, S.C. Qu, and Z.G. Wang: Synthesis and photoluminescence of ZnS:Cu nanoparticles. Opt. Mater. 29, 313–317 (2006).

    Article  CAS  Google Scholar 

  27. Q. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing, L.C. Lew Yan Voon, B. Lassen, and P.C. Eklund: Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett. 4, 1663–1668 (2004).

    Article  CAS  Google Scholar 

  28. S. Kakarndee, S. Juabrum, and S. Nanan: Low temperature synthesis, characterization and photoluminescence study of plate-like ZnS. Mater. Lett. 164, 198–201 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank GAMD, BARC for SEM measurements. M. Sharma would like to thank DST for INSPIRE Faculty grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashwati Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Sen, S., Gupta, J. et al. Tunable blue-green emission from ZnS(Ag) nanostructures grown by hydrothermal synthesis. Journal of Materials Research 33, 3963–3970 (2018). https://doi.org/10.1557/jmr.2018.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.358

Navigation