Skip to main content
Log in

Integrated ferroics for sensing, power, RF, and µ-wave electronics

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Strong magnetoelectric (ME) coupling realized in magnetic/ferroelectric multiferroic heterostructures provides great potential for different integrated multiferroic devices for sensing, power, RF, and µ-wave electronics. Here, we present the most recent progress on new integrated multiferroic devices including novel integrated magnetic tunable inductors with a wide operation frequency range; integrated nonreciprocal bandpass filter with dual H- and E-field tunability based on magnetostatics surface waves; dual H- and E-field tunable RF bandpass filters with nanomechanical ME resonators; RF nanomechanical ME resonators with pico-Tesla DC magnetic fields sensitivity; a new antenna miniaturization mechanism, acoustically actuated nanomechanical ME antennas, which successfully miniaturize the magnitude in 1–2 orders with the advantages of the high magnetic field sensitivity, highest antenna gain within all nanoscale antennas at the similar frequency, and ground plane immunity on the metallic surface and the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

    CAS  Google Scholar 

  2. M. Fiebig: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).

    CAS  Google Scholar 

  3. R. Ramesh and N.A. Spaldin: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    CAS  Google Scholar 

  4. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Google Scholar 

  5. C. Vaz, J. Hoffman, C. Ahn, and R. Ramesh: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).

    CAS  Google Scholar 

  6. G. Srinivasan: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153 (2010).

    CAS  Google Scholar 

  7. L.W. Martin, Y.H. Chu, and R. Ramesh: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. 68, 89 (2010).

    Google Scholar 

  8. J. Ma, J. Hu, Z. Li, and C.W. Nan: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).

    CAS  Google Scholar 

  9. J. Lou, M. Liu, D. Reed, Y. Ren, and N.X. Sun: Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate–lead titanate (PZN–PT) heterostructures. Adv. Mater. 21, 4711 (2009).

    CAS  Google Scholar 

  10. M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K.S. Ziemer, V.G. Harris, and N.X. Sun: Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19, 1826 (2009).

    Google Scholar 

  11. M. Liu, J. Lou, S. Li, and N.X. Sun: E‐Field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv. Funct. Mater. 21, 2593 (2011).

    CAS  Google Scholar 

  12. N.X. Sun and G. Srinivasan: Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 2, 1240004 (2012).

    Google Scholar 

  13. M. Liu, B.M. Howe, L. Grazulis, K. Mahalingam, T. Nan, N.X. Sun, and G.J. Brown: Voltage impulse induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25, 4886 (2013).

    CAS  Google Scholar 

  14. M. Liu, Z. Zhou, T. Nan, B.M. Howe, G.J. Brown, and N.X. Sun: Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy‐efficient magnetoelectric composites. Adv. Mater. 25, 1435 (2013).

    CAS  Google Scholar 

  15. H. Lin, Y. Gao, X. Wang, T. Nan, M. Liu, J. Lou, G. Yang, Z. Zhou, X. Yang, J. Wu, M. Li, Z. Hu, and N.X. Sun: Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans. Magn. 52 (2016).

  16. S. Dong, J.F. Li, and D. Viehland: Ultrahigh magnetic field sensitivity in laminates of terfenol-D and Pb (Mg1/3 Nb2/3) O3–PbTiO3 crystals. Appl. Phys. Lett. 83, 2265 (2003).

    CAS  Google Scholar 

  17. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland: Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88 (2006).

  18. G. Sreenivasulu, U. Laletin, V.M. Petrov, V.V. Petrov, and G. Srinivasan: A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Appl. Phys. Lett. 100 (2012).

  19. S. Dong, J. Zhai, J.F. Li, D. Viehland, and S. Priya: Multimodal system for harvesting magnetic and mechanical energy. Appl. Phys. Lett. 93, 103511 (2008).

    Google Scholar 

  20. T.D. Onuta, Y. Wang, C.J. Long, and I. Takeuchi: Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 99, 203506 (2011).

    Google Scholar 

  21. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.H. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, and Q. Zhan: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).

    CAS  Google Scholar 

  22. J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y.H. Chu, S. Salahuddin, and R. Ramesh: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    CAS  Google Scholar 

  23. T. Wu, A. Bur, P. Zhao, K.P. Mohanchandra, K. Wong, K.L. Wang, C.S. Lynch, and G.P. Carman: Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1−x)–[PbTiO3]x heterostructure. Appl. Phys. Lett. 98, 012504 (2011).

    Google Scholar 

  24. M. Liu, S. Li, O. Obi, J. Lou, S. Rand, and N.X. Sun: Electric field modulation of magnetoresistance in multiferroic heterostructures for ultralow power electronics. Appl. Phys. Lett. 98, 222509 (2011).

    Google Scholar 

  25. J.M. Hu, Z. Li, L.Q. Chen, and C.W. Nan: High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553 (2011).

    Google Scholar 

  26. T.X. Nan, Z.Y. Zhou, J. Lou, M. Liu, X. Yang, Y. Gao, S. Rand, and N.X. Sun: Voltage impulse induced bistable magnetization switching in multiferroic heterostructures. Appl. Phys. Lett. 100, 132409 (2012).

    Google Scholar 

  27. J. Lou, D. Reed, M. Liu, and N.X. Sun: Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl. Phys. Lett. 94, 112508 (2009).

    Google Scholar 

  28. G. Liu, X. Cui, and S. Dong: A tunable ring-type magnetoelectric inductor. J. Appl. Phys. 108, 094106 (2010).

    Google Scholar 

  29. G.M. Yang, J. Lou, J. Wu, M. Liu, G. Wen, Y. Jin, and N.X. Sun: Dual H- and E-field tunable multiferroic bandpass filters with yttrium iron garnet film. In IEEE MTT-S International Microwave Symposium (Baltimore, Maryland, June 5–10, 2011).

    Google Scholar 

  30. A.S. Tatarenko, V. Gheevarughese, and G. Srinivasan: Magnetoelectric microwave bandpass filter. Electron. Lett. 42, 540 (2006).

    Google Scholar 

  31. C. Pettiford, S. Dasgupta, J. Lou, S.D. Yoon, and N.X. Sun: Bias field effects on microwave frequency behavior of PZT/YIG magnetoelectric bilayer. IEEE Trans. Magn. 43, 3343 (2007).

    CAS  Google Scholar 

  32. Y.L. Fetisov and G. Srinivasan: Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006).

    Google Scholar 

  33. A.S. Tatarenko, G. Srinivasan, and M.I. Bichurin: Magnetoelectric microwave phase shifter. Appl. Phys. Lett. 88, 183507 (2006).

    Google Scholar 

  34. G.M. Yang and N.X. Sun: Tunable ultrawideband phase shifters with magnetodielectric disturber controlled by a piezoelectric transducer. IEEE Trans. Magn. 50, 1 (2014).

    Google Scholar 

  35. Z. Zhou, O. Obi, T. Nan, S. Beguhn, J. Lou, X. Yang, Y. Gao, M. Li, S. Rand, H. Lin, and N.X. Sun: Low-temperature spin spray deposited ferrite/piezoelectric thin film magnetoelectric heterostructures with strong magnetoelectric coupling. J. Mater. Sci.: Mater. Electron. 25, 1188 (2014).

    CAS  Google Scholar 

  36. Z. Zhou, X.Y. Zhang, T.F. Xie, T. Nan, Y. Gao, X. Yang, X.J. Wang, X.Y. He, P.S. Qiu, N.X. Sun, and D.Z. Sun: Strong non-volatile voltage control of magnetism in magnetic/antiferroelectric magnetoelectric heterostructures. Appl. Phys. Lett. 104, 012905 (2014).

    Google Scholar 

  37. T. Nan, Z. Zhou, M. Liu, X. Yang, Y. Gao, B.A. Assaf, H. Lin, S. Velu, X. Wang, H. Luo, and J. Chen: Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Sci. Rep. 4, 3688 (2014).

    Google Scholar 

  38. Y. Gao, S. Zare, X. Yang, T. Nan, Z.Y. Zhou, M. Onabajo, K.P. O’Brien, U. Jalan, M. EI-tatani, P. Fisher, and M. Liu: High quality factor integrated gigahertz magnetic transformers with FeGaB/Al2O3 multilayer films for radio frequency integrated circuits applications. J. Appl. Phys. 115, 17E714 (2014).

    Google Scholar 

  39. M. Liu and N.X. Sun: Voltage control of magnetism in multiferroic heterostructures. Phil. Trans. Math. Phys. Eng. Sci. 372, 20120439 (2014).

    Google Scholar 

  40. Z. Zhou, T. Nan, Y. Gao, X. Yang, S. Beguhn, M. Li, Y. Lu, J.L. Wang, M. Liu, K. Mahalingam, and B.M. Howe: Quantifying thickness-dependent charge mediated magnetoelectric coupling in magnetic/dielectric thin film heterostructures. Appl. Phys. Lett. 103, 232906 (2013).

    Google Scholar 

  41. X. Yang, J. Wu, S. Beguhn, T. Nan, Y. Gao, Z. Zhou, and N.X. Sun: Tunable bandpass filter using partially magnetized ferrites with high power handling capability. IEEE Microw. Wireless Compon. Lett. 23, 184 (2013).

    Google Scholar 

  42. X. Yang, J. Wu, Y. Gao, T. Nan, Z. Zhou, S. Beguhn, and N.X. Sun: Compact and low loss phase shifter with low bias field using partially magnetized ferrite. IEEE Trans. Magn. 49, 3882 (2013).

    Google Scholar 

  43. X. Yang, Y. Gao, J. Wu, S. Beguhn, T. Nan, Z. Zhou, M. Liu, and N.X. Sun: Dual H-and E-field tunable multiferroic bandpass filter at Ku band using partially magnetized spinel ferrites. IEEE Trans. Magn. 49, 5485 (2013).

    CAS  Google Scholar 

  44. M. Li, Z. Zhou, M. Liu, J. Lou, D.E. Oates, G.F. Dionne, M.L. Wang, and N.X. Sun: Novel NiZnAl-ferrites and strong magnetoelectric coupling in NiZnAl-ferrite/PZT multiferroic heterostructures. J. Appl. Phys. 46, 275001 (2013).

    Google Scholar 

  45. X. Yang, J. Wu, J. Lou, X. Xing, D.E. Oate, G.F. Dionne, and N.X. Sun: Compact tunable bandpass filter on YIG substrate. Electron. Lett. 48, 1070 (2012).

    CAS  Google Scholar 

  46. Z. Zhou, S. Beguhn, J. Lou, S. Rand, M. Li, X. Yang, S.D. Li, M. Liu, and N.X. Sun: Low moment NiCr radio frequency magnetic films for multiferroic heterostructures with strong magnetoelectric coupling. J. Appl. Phys. 111, 103915 (2012).

    Google Scholar 

  47. J. Lou, G.N. Pellegrini, M. Liu, N.D. Mathur, and N.X. Sun: Equivalence of direct and converse magnetoelectric coefficients in strain-coupled two-phase systems. Appl. Phys. Lett. 100, 102907 (2012).

    Google Scholar 

  48. G.M. Yang, O. Obi, G. Wen, and N.X. Sun: Design of tunable bandpass filters with ferrite sandwich materials by using a piezoelectric transducer. IEEE Trans. Magn. 47, 3732 (2011).

    CAS  Google Scholar 

  49. J. Lou, M. Liu, D. Reed, Y.H. Ren, and N.X. Sun: Electric field modulation of surface anisotropy and magneto-dynamics in multiferroic heterostructures. J. Appl. Phys. 109, 07D731 (2011).

    Google Scholar 

  50. M. Liu, O. Obi, J. Lou, S. Stoute, Z. Cai, K. Ziemer, and N.X. Sun: Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J. Phys. D: Appl. Phys. 42, 045007 (2009).

    Google Scholar 

  51. G.M. Yang, O. Obi, and N.X. Sun: Enhancing ground plane immunity of dipole antennas with spin-spray‐deposited lossy ferrite films. Microw. Opt. Technol. Lett. 54, 230 (2012).

    Google Scholar 

  52. G.M. Yang, X. Xing, A. Daigle, O. Obi, M. Liu, J. Lou, S. Stoute, K. Naishadham, and N.X. Sun: Planar annular ring antennas with multilayer self-biased NiCo-ferrite films loading. IEEE Trans. Antenn. Propag. 58, 648 (2010).

    Google Scholar 

  53. G.M. Yang, X. Xing, O. Obi, A. Daigle, M. Liu, S. Stoute, K. Naishadham, and N.X. Sun: Loading effects of self-biased magnetic films on patch antennas with substrate/superstrate sandwich structure. IET Microw., Antennas Propag. 4, 1172 (2010).

    Google Scholar 

  54. G.M. Yang, X. Xing, A. Daigle, M. Liu, O. Obi, S. Stoute, K. Naishadham, and N.X. Sun: Tunable miniaturized patch antennas with self-biased multilayer magnetic films. IEEE Trans. Antenn. Propag. 57, 2190 (2009).

    Google Scholar 

  55. G.M. Yang, R.H. Jin, G.B. Xiao, C. Vittoria, V.G. Harris, and N.X. Sun: Ultrawideband (UWB) antennas with multiresonant split-ring loops. IEEE Trans. Antennas Propag. 57, 256 (2009).

    Google Scholar 

  56. G.M. Yang, A. Daigle, M. Liu, O. Obi, S. Stoute, K. Naishadham, and N.X. Sun: Planar circular loop antennas with self-biased magnetic film loading. Electron. Lett. 44, 332 (2008).

    Google Scholar 

  57. T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang, M. Li, X. Wang, A. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M.E. McConney, B.M. Howe, Z. Hu, J.G. Jones, G.J. Brown, and N.X. Sun: Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 8, 296 (2017).

    Google Scholar 

  58. L.C. Lim, K.K. Rajan, and J. Jin: Characterization of flux-grown PZN-PT single crystals for high-performance piezo devices. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 54 (2007).

  59. M. Liu, S. Li, Z. Zhou, S. Beguhn, J. Lou, F. Xu, T.J. Lu, and N.X. Sun: Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures. J. Appl. Phys. 112, 063917 (2012).

    Google Scholar 

  60. Y. Gao, S.Z. Zardareh, X. Yang, T. Nan, Z.Y. Zhou, M. Onabajo, M. Liu, A. Aronow, K. Mahalingam, B.M. Howe, and G.J. Brown: Significantly enhanced inductance and quality factor of GHz integrated magnetic solenoid inductors with FeGaB/Al2O3 multilayer films. IEEE Trans. Electron Devices 61, 1470 (2014).

    CAS  Google Scholar 

  61. Y. Gao, S. Zare, M. Onabajo, M. Li, Z. Zhou, T. Nan, X. Yang, M. Liu, K. Mahalingam, B.M. Howe, and J.G. Jones: Power-efficient voltage tunable RF integrated magnetoelectric inductors with FeGaB/Al2O3 multilayer films. In IEEE MTT-S International Microwave Symposium (Tampa, Florida, 2014).

    Google Scholar 

  62. H. Lin, J. Wu, X. Yang, Z. Hu, T. Nan, S. Emori, Y. Gao, R. Guo, X. Wang, and N.X. Sun: Integrated non-reciprocal dual H-and E-field tunable bandpass filter with ultra-wideband isolation. In IEEE MTT-S International Microwave Symposium (Phoenix, Arizona, 2015).

    Google Scholar 

  63. H. Lin, T. Nan, Z. Qian, Y. Gao, Y. Hui, X. Wang, R. Guo, A. Belkessam, W. Shi, M. Rinaldi, and N.X. Sun: Tunable RF band-pass filters based on NEMS magnetoelectric resonators. In IEEE MTT-S International Microwave Symposium (IMS) (San Francisco, California, 2016).

    Google Scholar 

  64. S. Dong, J. Cheng, J.F. Li, and D. Viehland: Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb (Zr, Ti) O3 under resonant drive. Appl. Phys. Lett. 83, 4812 (2003).

    CAS  Google Scholar 

  65. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, and D. Meyners: Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523 (2012).

    CAS  Google Scholar 

  66. C. Israel, N.D. Mathur, and J.F. Scott: A one-cent room-temperature magnetoelectric sensor. Nat. Mater. 7, 93 (2008).

    CAS  Google Scholar 

  67. P. Zhao, Z. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, and I. Takeuchi: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 243507 (2009).

    Google Scholar 

  68. H. Greve, E. Woltermann, H.J. Quenzer, B. Wagner, and E. Quandt: Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010).

    Google Scholar 

  69. S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knöchel, and B. Wagner: Highly sensitive wafer-level packaged MEMS magnetic field sensor based on magnetoelectric composites. Sens. Actuators, A 189, 321 (2013).

    CAS  Google Scholar 

  70. R. Jahns, H. Greve, E. Woltermann, E. Quandt, and R. Knöchel: Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators, A 183, 16 (2012).

    CAS  Google Scholar 

  71. Y. Wang, D. Gray, D. Berry, J. Li, and D. Viehland: Self-amplified magnetoelectric properties in a dumbbell-shaped magnetostrictive/piezoelectric composite. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 59, 5 (2012).

    Google Scholar 

  72. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland: Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 91, 351 (2008).

    CAS  Google Scholar 

  73. S. Dong, J. Zhai, J. Li, and D. Viehland: Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89, 252904 (2006).

    Google Scholar 

  74. C.W. Nan, G. Liu, Y. Lin, and H. Chen: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

    Google Scholar 

  75. S. Dong, J. Zhai, F. Bai, J.F. Li, and D. Viehland: Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 87, 062502 (2005).

    Google Scholar 

  76. Y. Wang, J. Li, and D. Viehland: Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. Mater. Today 1, 269 (2014).

    Google Scholar 

  77. J. Zhai, J. Li, S. Dong, D. Viehland, and M.I. Bichurin: A quasi (unidirectional) Tellegen gyrator. J. Appl. Phys. 100, 124509 (2006).

    Google Scholar 

  78. A.S. Tatarenko and M.I. Bichurin: Electrically tunable resonator for microwave applications based on hexaferrite-piezoelectrc layered structure. J. Phys.: Condens. Matter 2, 135 (2012).

    Google Scholar 

  79. M.I. Bichurin, V.M. Petrov, R.V. Petrov, and A.S. Tatarenko: Magnetoelectric magnetometers. In High Sensitivity Magnetometers (2017); p. 127.

    Google Scholar 

  80. M.I. Bichurin and V.M. Petrov: Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites. Adv. Condens. Matter Phys. 2012 (2012).

  81. R.V. Petrov, I.N. Solovyev, A.N. Soloviev, and M.I. Bichurin: Magnetoelectric current sensor. In PIERS Proceedings (2013).

    Google Scholar 

  82. S. Dong, J.G. Bai, J. Zhai, J.F. Li, G-Q. Lu, D. Viehland, S. Zhang, and T.R. Shrout: Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite—A highly sensitive electric current and/or vortex magnetic field sensor. Appl. Phys. Lett. 86, 182506 (2005).

    Google Scholar 

  83. S. Dong, J.F. Li, and D. Viehland: Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 85, 2307 (2004).

    CAS  Google Scholar 

  84. S. Dong, J.F. Li, and D. Viehland: Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings. J. Appl. Phys. 96, 3382 (2004).

    CAS  Google Scholar 

  85. M.I. Bichurin, V.M. Petrov, R.V. Petrov, G.N. Kapralov, Y.V. Kiliba, F.I. Bukashev, A. Yu Smirnov, and A.S. Tatarenko: Magnetoelectric microwave devices. Ferroelectrics 280, 211 (2002).

    CAS  Google Scholar 

  86. T.T. Nguyen, F. Bouillault, L. Daniel, and X. Mininger: Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect. J. Appl. Phys. 109, 084904 (2011).

    Google Scholar 

  87. T. Nan, Y. Hui, M. Rinaldi, and N.X. Sun: Self-biased 215MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 3, 1985 (2013).

    Google Scholar 

  88. B.A. Kramer, C.C. Chen, M. Lee, and J.L. Volakis: Fundamental limits and design guidelines for miniaturizing ultra-wideband antennas. IEEE Antenn. Propag. Mag. 51, 57 (2009).

    Google Scholar 

  89. H. Mosallaei and K. Sarabandi: Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 52, 2403 (2004).

    Google Scholar 

  90. A.K. Skrivervik, J.F. Zürcher, O. Staub, and J.R. Mosig: PCS antenna design: The challenge of miniaturization. IEEE Antenn. Propag. Mag. 43, 12 (2001).

    Google Scholar 

  91. J.P. Gianvittorio and Y. Rahmat-Samii: Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antenn. Propag. Mag. 44, 20 (2002).

    Google Scholar 

  92. P.M.T. Ikonen, K.N. Rozanov, A.V. Osipov, P. Alitalo, and S.A. Tretyakov: Magnetodielectric substrates in antenna miniaturization: Potential and limitations. IEEE Trans. Antennas Propag. 54, 3391 (2006).

    Google Scholar 

  93. H. Mosallaei and K. Sarabandi: Magneto-dielectrics in electromagnetics: Concept and applications. IEEE Trans. Antennas Propag. 52, 1558 (2004).

    Google Scholar 

  94. Z. Yao and Y.E. Wang: Bulk Acoustic Wave Mediated Multiferroic Antennas Near Ferromagnetic Resonance (APS/URSI, Vancouver, British Columbia, Canada, July 19–24, 2015).

    Google Scholar 

  95. Z. Yao, Y.E. Wang, S. Keller, and G.P. Carman: Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound. IEEE Trans. Antenn. Propag. 63, 3335 (2015).

    Google Scholar 

  96. Z. Yao and Y.E. Wang: 3D ADI-FDTD Modeling of Platform Reduction With Thin Film Ferromagnetic Material (APS/URSI, Fajardo, Puerto Rico, June 26–July 1, 2016).

    Google Scholar 

  97. W.G.Q. Xu and Y.E. Wang: Two Dimensional (2D) Complex Permeability Characterization of Thin Film Ferromagnetic Material (IEEE CAMA, Syracuse, New York, Oct. 23–27, 2016).

    Google Scholar 

  98. J.P. Domann and G.P. Carman: Strain powered antennas. J. Appl. Phys. 121, 044905 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by DARPA through award D15PC00009, the W.M. Keck Foundation, the NSF TANMS ERC Award 1160504, and in part by the AFRL through contract FA8650-14-C-5706. Microfabrication was performed in the George J. Kostas Nanoscale Technology and Manufacturing Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwaider Lin.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Quinlan, R., Sun, N. et al. Integrated ferroics for sensing, power, RF, and µ-wave electronics. Journal of Materials Research 33, 4007–4017 (2018). https://doi.org/10.1557/jmr.2018.356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.356

Navigation