Skip to main content
Log in

In situ synthesis of CsTi2NbO7@g-C3N4 core–shell heterojunction with excellent electrocatalytic performance for the detection of nitrite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a N-doped CsTi2NbO7@g-C3N4 (NTCN) heterojunction nanocomposite was synthesized by a simple one-step calcination method. The as-prepared samples were characterized by means of X-ray diffraction patterns, scanning electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, and Fourier transformed infrared spectroscopy. The results showed that g-C3N4 was formed both on the surface and within the interlayers of CsTi2NbO7, in which CsTi2NbO7 was in situ doped by nitrogen atoms to form N–CsTi2NbO7. The NTCN composite displayed higher electrocatalytic activity toward the detection of nitrite than pure CsTi2NbO7 and g-C3N4. The main reasons could be attributed to the synergistic effects of morphology engineering, N-doping, and layered heterojunction. The NTCN-based electrochemical sensor expressed a good linear relationship range from 0.0999 to 3.15 mmol/L with a detection limit of 2.63 × 10−5 mol/L. The good recovery, stability, and reproducibility of this biosensor showed the potential application in environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S. Li, Y. Hu, A. Wang, X. Weng, J. Chen, and J. Feng: Simple synthesis of worm-like Au–Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens. Actuators, B 208, 468 (2015).

    CAS  Google Scholar 

  2. P. Wang, F. Li, X. Huang, Y. Li, and L. Wang: In situ electrodeposition of Pt nanoclusters on glassy carbon surface modified by monolayer choline film and their electrochemical applications. Electrochem. Commun. 10, 195 (2008).

    CAS  Google Scholar 

  3. Y. Zhang, Z. Su, B. Li, L. Zhang, D. Fan, and H. Ma: Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl. Mater. Interfaces 8, 12344 (2016).

    CAS  Google Scholar 

  4. Z. Lin, W. Xue, H. Chen, and J.M. Lin: Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal. Chem. 83, 8245 (2011).

    CAS  Google Scholar 

  5. I.M.P.L.V.O. Ferreira and S. Silva: Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 74, 1598 (2008).

    CAS  Google Scholar 

  6. P. Wang, M. Wang, F. Zhou, G. Yang, L. Qu, and X. Miao: Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem. Commun. 81, 74 (2017).

    CAS  Google Scholar 

  7. H. Wu, S. Fan, X. Jin, H. Zhang, H. Chen, Z. Dai, and X. Zou: Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal. Chem. 86, 6285 (2014).

    CAS  Google Scholar 

  8. P. Wang, Z. Mai, Z. Dai, Y. Li, and X. Zou: Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens. Bioelectron. 24, 3242 (2009).

    CAS  Google Scholar 

  9. C.E. Zou, B. Yang, D. Bin, J. Wang, S. Li, P. Yang, C. Wang, Y. Shiraishi, and Y. Du: Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 488, 135 (2017).

    CAS  Google Scholar 

  10. Y. Li, P. Wang, L. Wang, and X. Lin: Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens. Bioelectron. 22, 3120 (2007).

    CAS  Google Scholar 

  11. P. Wang, F. Zhou, Z. Wang, C. Lai, and X. Han: Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J. Electroanal. Chem. 750, 36 (2015).

    CAS  Google Scholar 

  12. T. Shibata, G. Takanashi, T. Nakamura, K. Fukuda, Y. Ebina, and T. Sasaki: Titanoniobate and niobate nanosheet photocatalysts: Superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ. Sci. 4, 535 (2011).

    CAS  Google Scholar 

  13. A. Takagaki, T. Yoshida, D. Lu, J.N. Kondo, M. Hara, K. Domen, and S. Hayashi: Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts. J. Phys. Chem. B 108, 11549 (2004).

    CAS  Google Scholar 

  14. M. Wang, J. Xu, X. Zhang, Z. Fan, and Z. Tong: Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Appl. Biochem. Biotechnol. 185, 834 (2018).

    CAS  Google Scholar 

  15. X. Zhang, L. Liu, J. Ma, X. Yang, X. Xu, and Z. Tong: A novel metalloporphyrin intercalated layered niobate as an electrode modified material for detection of hydrogen peroxide. Mater. Lett. 95, 21 (2013).

    CAS  Google Scholar 

  16. B. Pan, J. Xu, X. Zhang, J. Li, M. Wang, J. Ma, L. Liu, D. Zhang, and Z. Tong: Electrostatic self-assembly behaviour of exfoliated Sr2Nb3O10 nanosheets and cobalt porphyrins: Exploration of non-noble electro-catalysts towards hydrazine hydrate oxidation. J. Mater. Sci. 53, 6494 (2018).

    CAS  Google Scholar 

  17. M. Wang, Z. Fan, L. Yi, J. Xu, X. Zhang, and Z. Tong: Construction of iron porphyrin/titanoniobate nanosheets sensors for the sensitive detection of nitrite. J. Mater. Sci. 53, 11403 (2018).

    CAS  Google Scholar 

  18. L. Wang, Y. Nemoto, and Y. Yamauchi: Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133, 9674 (2011).

    CAS  Google Scholar 

  19. Y. Sun, J. Jiang, Y. Liu, S. Wu, and J. Zou: A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl. Surf. Sci. 430, 362 (2018).

    CAS  Google Scholar 

  20. J. Wen, J. Xie, X. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    CAS  Google Scholar 

  21. J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang, and W. Liu: Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 3, 18244 (2015).

    CAS  Google Scholar 

  22. M. Zhou, Z. Hou, L. Zhang, Y. Liu, Q. Gao, and X. Chen: n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustainable Energy Fuels 1, 317 (2017).

    CAS  Google Scholar 

  23. T. Yu, L. Liu, and F. Yang: Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system. Chin. J. Catal. 38, 270 (2017).

    CAS  Google Scholar 

  24. Y. Li, K. Lv, W. Ho, Z. Zhao, and Y. Huang: Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. Chin. J. Catal. 38, 321 (2017).

    CAS  Google Scholar 

  25. R. Hao, G. Wang, C. Jiang, H. Tang, and Q. Xu: In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surf. Sci. 411, 400 (2017).

    CAS  Google Scholar 

  26. B. Wang, J. Zhang, and F. Huang: Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts. Appl. Surf. Sci. 391, 449 (2017).

    CAS  Google Scholar 

  27. M. Wang, M. Fang, C. Tang, L. Zhang, Z. Huang, Y. Liu, and X. Wu: A C3N4/Bi2WO6 organic-inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).

    CAS  Google Scholar 

  28. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    CAS  Google Scholar 

  29. J. Chen, S. Shen, P. Guo, M. Wang, J. Su, D. Zhao, and L. Guo: Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. J. Mater. Res. 29, 64 (2014).

    CAS  Google Scholar 

  30. L. Wang, H. Liu, H. Fu, Y. Wang, K. Yu, and S. Wang: Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties. J. Mater. Res. 33, 1401 (2018).

    CAS  Google Scholar 

  31. X.L., J. Shen, Z. Wu, J. Wang, and J. Xie: Deposition of Ag nanoparticles on g-C3N4 nanosheet by N, N-dimethylformamide: Soft synthesis and enhanced photocatalytic activity. J. Mater. Res. 29, 2170 (2014).

    Google Scholar 

  32. S. Fu, Y. He, Q. Wu, Y. Wu, and T. Wu: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).

    CAS  Google Scholar 

  33. Y. Liang, W. Wu, P. Wang, S.C. Liou, D. Liu, and S.H. Ehrman: Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4. Nano Res. 11, 4049 (2018).

    CAS  Google Scholar 

  34. F. Su, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, and X. Wang: mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299 (2010).

    CAS  Google Scholar 

  35. K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senkerand, and B.V. Lotsch: Crystalline carbon nitride nanosheets for improved visible-lighthydrogen evolution. J. Am. Chem. Soc. 136, 1730 (2014).

    CAS  Google Scholar 

  36. C. Liu, H. Zhu, Y. Zhu, P. Dong, H. Hou, Q. Xu, X. Chen, X. Xi, and W. Hou: Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Appl. Catal., B 228, 54 (2018).

    CAS  Google Scholar 

  37. B. Zeng, L. Zhang, X. Wan, H. Song, and Y. Lv: Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens. Actuators, B 211, 370 (2015).

    CAS  Google Scholar 

  38. Y. Hu, L. Li, L. Zhang, and Y. Lv: Dielectric barrier discharge plasma-assisted fabrication of g-C3N4-Mn3O4 composite for high-performance cataluminescence H2S gas sensor. Sens. Actuators, B 239, 1177 (2017).

    CAS  Google Scholar 

  39. N.T. Hang, S. Zhang, and W. Yang: Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sens. Actuators, B 248, 940 (2017).

    Google Scholar 

  40. C. Yang, X. Wang, H. Liu, S. Ge, M. Yan, J. Yu, and X. Song: An inner filter effect fluorescent sensor based on g-C3N4 nanosheets/chromogenic probe for simple detection of glutathione. Sens. Actuators, B 248, 639 (2017).

    CAS  Google Scholar 

  41. G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T.M. Nguyen, F. Vidal, and W. Chen: Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 6, 7258 (2015).

    CAS  Google Scholar 

  42. Y. Liang, C. Guo, S. Cao, Y. Tian, and Q. Lui: A high quality BiOCl film with petal-like hierarchical structures and its visible-light photocatalytic property. J. Nanosci. Nanotechnol. 13, 919 (2013).

    CAS  Google Scholar 

  43. Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, and Y. Zhu: Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/gC3N4 hybrid heterostructure thin film. Appl. Catal., B 201, 600 (2017).

    CAS  Google Scholar 

  44. C. Liu, C. Zhang, J. Wang, Q. Xu, X. Chen, C. Wang, X. Xi, and W. Hou: N-doped CsTi2NbO7@g-C3N4 core–shell nanobelts with enhanced visible light photocatalytic activity. Mater. Lett. 217, 235 (2018).

    CAS  Google Scholar 

  45. J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, and S.J. Hwang: Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133, 14998 (2011).

    CAS  Google Scholar 

  46. J. Xu, L. Zhang, R. Shi, and Y. Zhu: Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 1, 14766 (2013).

    CAS  Google Scholar 

  47. C. Liu, Q. Wu, M. Ji, H. Zhu, H. Hou, Q. Yang, C. Jiang, J. Wang, L. Tian, J. Chen, and W. Hou: Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J. Alloys Compd. 723, 1121 (2017).

    CAS  Google Scholar 

  48. J. Xia, M. Ji, J. Di, B. Wang, S. Yin, Q. Zhang, M. He, and H. Li: Construction of ultrathin C3N4/Bi4O5I2 layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight. Appl. Catal., B 191, 235 (2016).

    CAS  Google Scholar 

  49. H. Park, D.H. Shin, T. Song, W.I. Park, and U. Paik: Synthesis of hierarchical porous TiNb2O7 nanotubes with controllable porosity and their application in high power Li-ion batteries. J. Mater. Chem. A 5, 6958 (2017).

    CAS  Google Scholar 

  50. Z. Zhang, J. Huang, M. Zhang, Q. Yuan, and B. Dong: Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal., B 163, 298 (2015).

    CAS  Google Scholar 

  51. C. Liu, T. Sun, L. Wu, J. Liang, Q. Huang, J. Chen, and W. Hou: N-doped Na2Ti6O13@TiO2 core–shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic performance. Appl. Catal., B 170–171, 17 (2015).

    Google Scholar 

  52. Y. Hou, F. Zuo, A. Dagg, and P.Y. Feng: A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem., Int. Ed. 125, 1286 (2013).

    Google Scholar 

  53. Q. Xiang, J. Yu, and M. Jaroniec: Preparation and eenhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 7355 (2011).

    CAS  Google Scholar 

  54. E. Laviron: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19 (1979).

    CAS  Google Scholar 

  55. A. Afkhami, F. Soltani-Felehgari, T. Madrakian, and H. Ghaedi: Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron. 51, 379 (2014).

    CAS  Google Scholar 

  56. X.H. Pham, C.A. Li, K.N. Han, B.C. Huynh-Nguyen, T.H. Le, E. Ko, J.H. Kim, and G.H. Seong: Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators, B 193, 815 (2014).

    CAS  Google Scholar 

  57. C. Liu, J.Y. Liang, R.R. Han, Y.Z. Wang, J. Zhao, Q.J. Huang, J. Chen, and W.H. Hou: S-doped Na2Ti6O13@TiO2 core–shell nanorods with enhanced visible light photocatalytic performance. Phys. Chem. Chem. Phys. 17, 15165 (2015).

    CAS  Google Scholar 

  58. O. Brylev, M. Sarrazin, L. Roué, and D. Bélanger: Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim. Acta 52, 6237 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Tong.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Liu, C., Zhang, X. et al. In situ synthesis of CsTi2NbO7@g-C3N4 core–shell heterojunction with excellent electrocatalytic performance for the detection of nitrite. Journal of Materials Research 33, 3936–3945 (2018). https://doi.org/10.1557/jmr.2018.354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.354

Navigation