Skip to main content
Log in

Atomistic consideration of earth-abundant chalcogenide materials for photovoltaics: Kesterite and beyond

  • Invited Feature Paper — Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Despite the potential as a promising alternative to CdTe and Cu(In,Ga)Se2, the kesterite compound Cu2ZnSn(S,Se)4 (CZTSSe) presents a critical challenge mainly from its high open-circuit voltage (Voc) deficit. Indeed, the Voc of the record CZTSSe solar cell to date has accounted for only 61% of that calculated by the Shockley–Queisser limit, whose origin can be ascribed to nonradiative recombination from a high density of defects and secondary phases. Therefore, an atomistic understanding and characterization of CZTSSe is highly essential to overcoming the current shortcomings in kesterite. This review discusses the advanced characterization techniques for studying the intrinsic properties of kesterite at a nanometer scale. Moreover, a cation substitution with an ionic mismatch around constituents is recognized as an effective route to address the fundamental limit (i.e., the cationic disorder) in CZTSSe. Here, we review recent studies on a novel chalcogenide Cu2BaSn(S,Se)4 that substitutes Zn with Ba and results in less cationic disordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. S. Siebentritt and S. Schorr: Kesterites—A challenging material for solar cells. Prog. Photovoltaics 20, 512 (2012).

    CAS  Google Scholar 

  2. A. Walsh, S. Chen, S.-H. Wei, and X.-G. Gong: Kesterite thin‐film solar cells: Advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400 (2012).

    CAS  Google Scholar 

  3. T.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H.W. Schock: Heterojuncitons based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films. In Proceedings of the 14th European PVSEC, Barcelona, Spain, 1997, H.A. Ossenbrink, P. Helm, and H. Ehmann, eds. (H.S. Stephens & Associates, Bedford, UK, 1997); p. 1242.

    Google Scholar 

  4. K. Hironori, J. Kazuo, Y. Satoru, K. Tsuyoshi, M. Win Shwe, F. Tatsuo, I. Tadashi, and M. Tomoyoshi: Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1, 041201 (2008).

    Google Scholar 

  5. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima: Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65, 141 (2001).

    CAS  Google Scholar 

  6. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi: Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).

    Google Scholar 

  7. F. Solar: First Solar Achieves Yet Another Cell Conversion Efficiency World Record (First Solar, 2016). Available at: https://www.printedelectronicsnow.com/contents/view_breaking-news/2015-02-05/first-solar-achieves-efficiency-durability-milestones/46380 (accessed May 2, 2015).

    Google Scholar 

  8. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla: Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10, 583 (2016).

    CAS  Google Scholar 

  9. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).

    CAS  Google Scholar 

  10. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    CAS  Google Scholar 

  11. S. Rühle: Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139 (2016).

    Google Scholar 

  12. W. Shockley and W.T. Read: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952).

    CAS  Google Scholar 

  13. R.N. Hall: Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952).

    CAS  Google Scholar 

  14. J. Kim and B. Shin: Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells. Electron. Mater. Lett. 13, 373 (2017).

    Google Scholar 

  15. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F. Zhou, J.A. Stride, M.A. Green, and X. Hao: Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: Effects of cadmium alloying. ACS Energy Lett. 2, 930 (2017).

    CAS  Google Scholar 

  16. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, and S. Guha: Cu2ZnSnSe4 thin‐film solar cells by thermal co‐evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 1401372 (2015).

    Google Scholar 

  17. T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi: Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 103506 (2013).

    Google Scholar 

  18. S. Chen, X.G. Gong, A. Walsh, and S-H. Wei: Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010).

    Google Scholar 

  19. S. Chen, A. Walsh, X.G. Gong, and S.H. Wei: Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers. Adv. Mater. 25, 1522 (2013).

    Google Scholar 

  20. P. Xu, S. Chen, B. Huang, H.J. Xiang, X-G. Gong, and S-H. Wei: Stability and electronic structure of Cu2ZnSnS4 surfaces: First-principles study. Phys. Rev. B 88, 045427 (2013).

    Google Scholar 

  21. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha: The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421 (2011).

    CAS  Google Scholar 

  22. S. Kim, J-S. Park, and A. Walsh: Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496 (2018).

    CAS  Google Scholar 

  23. L. Choubrac, A. Lafond, C. Guillot-Deudon, Y. Moëlo, and S. Jobic: Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: From the stoichiometric to the copper-poor compounds. Inorg. Chem. 51, 3346 (2012).

    CAS  Google Scholar 

  24. A. Lafond, L. Choubrac, C. Guillot‐Deudon, P. Deniard, and S. Jobic: Crystal structures of photovoltaic chalcogenides, an intricate puzzle to solve: The cases of CIGSe and CZTS materials. Z. Anorg. Allg. Chem. 638, 2571 (2012).

    CAS  Google Scholar 

  25. S. Siebentritt: Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1 (2013).

    CAS  Google Scholar 

  26. H. Du, F. Yan, M. Young, B. To, C-S. Jiang, P. Dippo, D. Kuciauskas, Z. Chi, E.A. Lund, C. Hancock, W.M.H. OO, M.A. Scarpulla, and G. Teeter: Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence. J. Appl. Phys. 115, 173502 (2014).

    Google Scholar 

  27. S.K. Wallace, D.B. Mitzi, and A. Walsh: The steady rise of kesterite solar cells. ACS Energy Lett. 2, 776 (2017).

    CAS  Google Scholar 

  28. S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, A. Walsh, and G. Dennler: Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016).

    Google Scholar 

  29. S. Schorr, H-J. Hoebler, and M. Tovar: A neutron diffraction study of the stannite-kesterite solid solution series. Eur. J. Mineral. 19, 65 (2007).

    CAS  Google Scholar 

  30. T. Washio, H. Nozaki, T. Fukano, T. Motohiro, K. Jimbo, and H. Katagiri: Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation X-ray diffraction. J. Appl. Phys. 110, 074511 (2011).

    Google Scholar 

  31. A. Lafond, L. Choubrac, C. Guillot-Deudon, P. Fertey, M. Evain, and S. Jobic: X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70, 390 (2014).

    CAS  Google Scholar 

  32. K.H. Stone, S.T. Christensen, S.P. Harvey, G. Teeter, I.L. Repins, and M.F. Toney: Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant X-ray diffraction. Appl. Phys. Lett. 109, 161901 (2016).

    Google Scholar 

  33. T. Gershon, B. Shin, N. Bojarczuk, T. Gokmen, S. Lu, and S. Guha: Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device. J. Appl. Phys. 114, 154905 (2013).

    Google Scholar 

  34. M. Grossberg, J. Krustok, T. Raadik, M. Kauk-Kuusik, and J. Raudoja: Photoluminescence study of disordering in the cation sublattice of Cu2ZnSnS4. Curr. Appl. Phys. 14, 1424 (2014).

    Google Scholar 

  35. L. Choubrac, M. Paris, A. Lafond, C. Guillot-Deudon, X. Rocquefelte, and S. Jobic: Multinuclear (67Zn, 119Sn, and 65Cu) NMR spectroscopy—An ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. Phys. Chem. Chem. Phys. 15, 10722 (2013).

    CAS  Google Scholar 

  36. M. Paris, G. Larramona, P. Bais, S. Bourdais, A. Lafond, C. Choné, C. Guillot-Deudon, B. Delatouche, C. Moisan, and G. Dennler: 119Sn MAS NMR to assess the cationic disorder and the anionic distribution in sulfoselenide Cu2ZnSn(SxSe1−x)4 compounds prepared from colloidal and ceramic routes. J. Phys. Chem. C 119, 26849 (2015).

    CAS  Google Scholar 

  37. B.G. Mendis, M.D. Shannon, M.C. Goodman, J.D. Major, R. Claridge, D.P. Halliday, and K. Durose: Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy. Prog. Photovoltaics 22, 24 (2014).

    CAS  Google Scholar 

  38. J.A. Aguiar, M.E. Erkan, D.S. Pruzan, A. Nagaoka, K. Yoshino, H. Moutinho, M. Al‐Jassim, and M.A. Scarpulla: Cation ratio fluctuations in Cu2ZnSnS4 at the 20nm length scale investigated by analytical electron microscopy. Phys. Status Solidi A 213, 2392 (2016).

    CAS  Google Scholar 

  39. N.A. Kattan, I.J. Griffiths, D. Cherns, and D.J. Fermin: Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy. Nanoscale 8, 14369 (2016).

    CAS  Google Scholar 

  40. B.G. Mendis, K.P. McKenna, G. Gurieva, M.S. Rumsey, and S. Schorr: Crystal structure and anti-site boundary defect characterisation of Cu2ZnSnSe4. J. Mater. Chem. A 6, 189 (2018).

    CAS  Google Scholar 

  41. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao: Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy Environ. Sci. 8, 3134 (2015).

    CAS  Google Scholar 

  42. T.F. Kelly and M.K. Miller: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).

    Google Scholar 

  43. T. Schwarz, M.A.L. Marques, S. Botti, M. Mousel, A. Redinger, S. Siebentritt, O. Cojocaru-Mirédin, D. Raabe, and P-P. Choi: Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films. Appl. Phys. Lett. 107, 172102 (2015).

    Google Scholar 

  44. T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe: Atom probe tomography study of internal interfaces in Cu2ZnSnSe4 thin-films. J. Appl. Phys. 118, 095302 (2015).

    Google Scholar 

  45. T. Schwarz, O. Cojocaru-Mirédin, M. Mousel, A. Redinger, D. Raabe, and P-P. Choi: Formation of nanometer-sized Cu–Sn–Se particles in Cu2ZnSnSe4 thin-films and their effect on solar cell efficiency. Acta Mater. 132, 276 (2017).

    CAS  Google Scholar 

  46. J.E. Jaffe and A. Zunger: Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors. Phys. Rev. B 27, 5176 (1983).

    CAS  Google Scholar 

  47. S. Chen, X.G. Gong, A. Walsh, and S-H. Wei: Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 94, 041903 (2009).

    Google Scholar 

  48. C. Persson and A. Zunger: Compositionally induced valence-band offset at the grain boundary of polycrystalline chalcopyrites creates a hole barrier. Appl. Phys. Lett. 87, 211904 (2005).

    Google Scholar 

  49. M. Gloeckler, J.R. Sites, and W.K. Metzger: Grain-boundary recombination in Cu(In,Ga)Se2 solar cells. J. Appl. Phys. 98, 113704 (2005).

    Google Scholar 

  50. J.H. Kim, S.-Y. Choi, M. Choi, T. Gershon, Y.S. Lee, W. Wang, B. Shin, and S.-Y. Chung: Atomic‐scale observation of oxygen substitution and its correlation with hole‐transport barriers in Cu2ZnSnSe4 thin‐film solar cells. Adv. Energy Mater. 6, 1501902 (2016).

    Google Scholar 

  51. K. Sardashti, R. Haight, T. Gokmen, W. Wang, L-Y. Chang, D.B. Mitzi, A.C. Kummel: Impact of nanoscale elemental distribution in high‐performance kesterite solar cells. Adv. Energy Mater. 5, 1402180 (2015).

    Google Scholar 

  52. T. Schwarz and S.V. GmbH: On the nano-scale characterization of kesterite thin-films. Ph.D.thesis, RWTH Aachen, 2015.

    Google Scholar 

  53. N. Takeshi, M. Tsuyoshi, T. Kouji, M. Masaru, and W. Takahiro: Crystal structures and band‐gap energies of Cu2Sn(S,Se)3 (0 ≤ x ≤ 1.0) solid solution. Phys. Status Solidi C 10, 1093 (2013).

    Google Scholar 

  54. U. Rau and J.H. Werner: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84, 3735 (2004).

    CAS  Google Scholar 

  55. R. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).

    Google Scholar 

  56. Z.-K. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, and S.-H. Wei: Engineering solar cell absorbers by exploring the band alignment and defect disparity: The case of Cu‐ and Ag‐based kesterite compounds. Adv. Funct. Mater. 25, 6733 (2015).

    CAS  Google Scholar 

  57. E. Chagarov, K. Sardashti, A.C. Kummel, Y.S. Lee, R. Haight, and T.S. Gershon: Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics. J. Chem. Phys. 144, 104704 (2016).

    Google Scholar 

  58. G. Weiyan, T. Takahiro, T. Koji, M. Masaru, M. Tsuyoshi, and W. Takahiro: Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions. Phys. Status Solidi C 12, 700 (2015).

    Google Scholar 

  59. C.J. Hages, M.J. Koeper, and R. Agrawal: Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying. Sol. Energy Mater. Sol. Cells 145, 342 (2016).

    CAS  Google Scholar 

  60. T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, and R. Haight: Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1−x)2ZnSnSe4. Adv. Energy Mater. 6, 1502468 (2016).

    Google Scholar 

  61. Z. Su, J.M.R. Tan, X. Li, X. Zeng, and S.K. Batabyal: Cation substitution of solution‐processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater. 5, 1500682 (2015).

    Google Scholar 

  62. J. Fu, Q. Tian, Z. Zhou, D. Kou, Y. Meng, W. Zhou, and S. Wu: Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution. Chem. Mater. 28, 5821 (2016).

    CAS  Google Scholar 

  63. J. Paier, R. Asahi, A. Nagoya, and G. Kresse: Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree–Fock density functional theory study. Phys. Rev. B 79, 115126 (2009).

    Google Scholar 

  64. S. Lie, J.M. Rui Tan, W. Li, S.W. Leow, Y.F. Tay, D.M. Bishop, O. Gunawan, and L.H. Wong: Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution. J. Mater. Chem. A 6, 1540 (2018).

    CAS  Google Scholar 

  65. C. Dong, G.Y. Ashebir, J. Qi, J. Chen, Z. Wan, W. Chen, and M. Wang: Solution-processed Cu2FeSnS4 thin films for photovoltaic application. Mater. Lett. 214, 287 (2018).

    CAS  Google Scholar 

  66. P.S. Maldar, M.A. Gaikwad, A.A. Mane, S.S. Nikam, S.P. Desai, S.D. Giri, A. Sarkar, and A.V. Moholkar: Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Sol. Energy 158, 89 (2017).

    CAS  Google Scholar 

  67. D. Shin, B. Saparov, and D.B. Mitzi: Defect engineering in multinary earth‐abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 7, 1602366 (2017).

    Google Scholar 

  68. D. Shin, B. Saparov, T. Zhu, W.P. Huhn, V. Blum, and D.B. Mitzi: BaCu2Sn(S,Se)4: Earth-Abundant chalcogenides for thin-film photovoltaics. Chem. Mater. 28, 4771 (2016).

    CAS  Google Scholar 

  69. F. Hong, W. Lin, W. Meng, and Y. Yan: Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys. Chem. Chem. Phys. 18, 4828 (2016).

    CAS  Google Scholar 

  70. T. Zhu, W.P. Huhn, G.C. Wessler, D. Shin, B. Saparov, D.B. Mitzi, and V. Blum: I2–II–IV–VI4 (I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): Chalcogenides for thin-film photovoltaics. Chem. Mater. 29, 7868 (2017).

    CAS  Google Scholar 

  71. C. Wang, S. Chen, J-H. Yang, L. Lang, H-J. Xiang, X-G. Gong, A. Walsh, and S-H. Wei: Design of I2–II–IV–VI4 semiconductors through element substitution: The thermodynamic stability limit and chemical trend. Chem. Mater. 26, 3411 (2014).

    CAS  Google Scholar 

  72. C.L. Teske: Darstellung und Kristallstruktur von Cu2SrSnS4. Z. Anorg. Allg. Chem. 419, 67 (1976).

    CAS  Google Scholar 

  73. C.R.L. Teske and O. Vetter: Ergebnisse einer Röntgenstrukturanalyse von Silber‐Barium‐Thiostannat(IV), Ag2BaSnS4. Z. Anorg. Allg. Chem. 427, 200 (1976).

    CAS  Google Scholar 

  74. J. Ge, P. Koirala, C.R. Grice, P.J. Roland, Y. Yu, X. Tan, R.J. Ellingson, R.W. Collins, Y. Yan: Oxygenated CdS buffer layers enabling high open‐circuit voltages in earth‐abundant Cu2BaSnS4 thin‐film solar cells. Adv. Energy Mater. 7, 1601803 (2017).

    Google Scholar 

  75. D. Shin, T. Zhu, X. Huang, O. Gunawan, V. Blum, D.B. Mitzi: Earth‐abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S,Se)4 absorber. Adv. Mater. 29, 1606945 (2017).

    Google Scholar 

  76. D. Shin, E. Ngaboyamahina, Y. Zhou, J.T. Glass, and D.B. Mitzi: Synthesis and characterization of an earth-abundant Cu2BaSn(S,Se)4 chalcogenide for photoelectrochemical cell application. J. Phys. Chem. Lett. 7, 4554 (2016).

    CAS  Google Scholar 

  77. Y. Zhou, D. Shin, E. Ngaboyamahina, Q. Han, C.B. Parker, D.B. Mitzi, and J.T. Glass: Efficient and stable Pt/TiO2/CdS/Cu2BaSn(S,Se)4 photocathode for water electrolysis applications. ACS Energy Lett. 3, 177 (2018).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Nos. 20163030013690 and 20173010012980), by the Technology Development Program to Solve Climate Changes (No. 2016M1A2A2936757) and Brain Pool Program (Grant No. 2018 H1D3A2002475) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT. This research was also financially supported by the Framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (Grant No. B8-2421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghyeop Shin or Byungha Shin.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Larina, L., Chung, SY. et al. Atomistic consideration of earth-abundant chalcogenide materials for photovoltaics: Kesterite and beyond. Journal of Materials Research 33, 3986–3998 (2018). https://doi.org/10.1557/jmr.2018.350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.350

Navigation