Skip to main content
Log in

Simultaneous morphology, band structure, and defect optimization of graphitic carbon nitride microsphere by the precursor concentration to boost photocatalytic activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) microspheres (CNMS) were fabricated via a solvothermal method by using dicyandiamide and cyanuric chloride as precursors. The morphology, band structure, and defects can be simultaneously regulated by merely adjusting the concentration of precursors. Structural characterization results indicate that all the prepared samples possess spherical morphology, while the band gap decreased as the precursor concentration increased from 8 mmol (CNMS-1) to 24 mmol (CNMS-3). Besides, ultraviolet photoelectron spectroscopy results suggested that the valence band of CNMS-2 (16 mmol) was much higher than that of CNMS-1 and CNMS-3. Additionally, organic elemental analysis, X-ray photoelectron spectroscopy, and electron paramagnetic resonance results unveil the formation of nitrogen defects on the surface of prepared samples. Besides, CNMS-2 exhibits an enhanced apparent reaction rate constant of RhB degradation than that of CNMS-1 and CNMS-3. The improved apparent reaction rate constant may be due to the lowered valence band as well as the formation of nitrogen defects. This work might guide the regulation of the morphology and band structure of g-C3N4-based materials prepared via the one-pot hydrothermal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J. Wang, C. Qin, H. Wang, M. Chu, A. Zada, X. Zhang, J. Li, F. Raziq, Y. Qu, and L. Jing: Exceptional photocatalytic activities for CO2 conversion on Al–O bridged g-C3N4/α-Fe2O3 Z-scheme nanocomposites and mechanism insight with isotopesZ. Appl. Catal., B 221, 459 (2018). https://doi.org/10.1016/j.apcatb.2017.09.042

    CAS  Google Scholar 

  2. Y. Tamaki and O. Ishitani: Supramolecular photocatalysts for the reduction of CO2. ACS Catal. 7, 3394 (2017). https://doi.org/10.1021/acscatal.7b00440

    CAS  Google Scholar 

  3. L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin, X. Hai, H. Song, and J. Ye: Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14, 1703142 (2018).

    Google Scholar 

  4. M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, and T. Majima: Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 139, 13234 (2017).

    CAS  Google Scholar 

  5. H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, and H. Li: Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal., B 174–175, 445 (2015).

    Google Scholar 

  6. T. Kanagaraj, S. Thiripuranthagan, S.M.K. Paskalis, and H. Abe: Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes. Appl. Surf. Sci. 426, 1030 (2017).

    CAS  Google Scholar 

  7. X. Li, J. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    CAS  Google Scholar 

  8. K.H.A. Fujishima: Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37 (1972).

    CAS  Google Scholar 

  9. J. Low, B. Cheng, and J. Yu: Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 392, 658 (2017). https://doi.org/10.1016/j.apsusc.2016.09.093

    CAS  Google Scholar 

  10. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).

    CAS  Google Scholar 

  11. T. Kako, W. Yao, and J. Ye: Preparation and characterization of visible light sensitive Fe- and Ta-codoped TiO2 photocatalyst. J. Mater. Res. 25, 110 (2011).

    Google Scholar 

  12. Y.H. Ng, A. Iwase, A. Kudo, and R. Amal: Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 1, 2607 (2010).

    CAS  Google Scholar 

  13. W. Wei, X. Yue, H. Cui, X. Lü, and J. Xie: Hydrothermal synthesis and properties of BiVO4 photocatalysts. J. Mater. Res. 28, 3408 (2013).

    CAS  Google Scholar 

  14. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, and S.P. Chai: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116, 7159 (2016).

    CAS  Google Scholar 

  15. X. She, L. Liu, H. Ji, Z. Mo, Y. Li, L. Huang, D. Du, H. Xu, and H. Li: Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal., B 187, 144 (2016).

    CAS  Google Scholar 

  16. C. Sun, M.H. Zhang, Q.Q. Fei, D.Y. Wang, Z.L. Sun, Z.M. Geng, W.M. Xu, and F. Liu: Graphite-like g-C3N4-F127-Au nanosheets used for sensitive monitoring of heat shock protein 90. Sens. Actuators, B 256, 160 (2018).

    CAS  Google Scholar 

  17. J. Zhu, T. Diao, W. Wang, X. Xu, X. Sun, S.A.C. Carabineiro, and Z. Zhao: Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl. Catal., B 219, 92 (2017).

    CAS  Google Scholar 

  18. R. He, J. Zhou, H. Fu, S. Zhang, and C. Jiang: Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 430, 273 (2018).

    CAS  Google Scholar 

  19. H. Zhang, W. Tian, L. Zhou, H. Sun, M. Tade, and S. Wang: Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Appl. Catal., B 223, 2 (2018).

    CAS  Google Scholar 

  20. B. Luo, R. Song, and D. Jing: Significantly enhanced photocatalytic hydrogen generation over graphitic carbon nitride with carefully modified intralayer structures. Chem. Eng. J. 332, 499 (2018).

    CAS  Google Scholar 

  21. F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, and W.K. Ho: In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 5, 11392 (2013).

    CAS  Google Scholar 

  22. L. Ye, D. Wang, and S. Chen: Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl. Mater. Interfaces 8, 5280 (2016).

    CAS  Google Scholar 

  23. M. Wang, M.H. Fang, C. Tang, L.N. Zhang, Z.H. Huang, Y.G. Liu, and X.W. Wu: A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).

    CAS  Google Scholar 

  24. H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, and T. Zhang: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017).

    Google Scholar 

  25. J. Wen, J. Xie, X. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    CAS  Google Scholar 

  26. L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, and W. Jin: Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol. 6, 7002 (2016).

    CAS  Google Scholar 

  27. J. Barrio, L. Lin, X. Wang, and M. Shalom: Design of a unique energy-band structure and morphology in a carbon nitride photocatalyst for improved charge separation and hydrogen production. ACS Sustainable Chem. Eng. 6, 519 (2017). https://doi.org/10.1021/acssuschemeng.7b02807

    Google Scholar 

  28. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, and F. Cui: Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl. Catal., B 220, 290 (2018).

    CAS  Google Scholar 

  29. Q. Hao, R. Wang, H. Lu, C. Xie, W. Ao, D. Chen, C. Ma, W. Yao, and Y. Zhu: One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Appl. Catal., B 219, 63 (2017).

    CAS  Google Scholar 

  30. K. He, J. Xie, Z-Q. Liu, N. Li, X. Chen, J. Hu, and X. Li: Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J. Mater. Chem. A 6, 13110 (2018). https://doi.org/10.1039/C8TA03048K

    CAS  Google Scholar 

  31. K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, and X. Zhang: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).

    CAS  Google Scholar 

  32. S. Samanta, S. Martha, and K. Parida: Facile synthesis of Au/g-C3N4 nanocomposites: An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem, 6, 1453 (2014).

    CAS  Google Scholar 

  33. B. Chai, F. Zou, and W. Chen: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30, 1128 (2015). https://doi.org/10.1557/jmr.2015.91

    CAS  Google Scholar 

  34. S. Liu, J. Chen, D. Xu, X. Zhang, and M. Shen: Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication. J. Mater. Res. 33, 1391 (2018).

    CAS  Google Scholar 

  35. F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201 (2017).

    Google Scholar 

  36. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    CAS  Google Scholar 

  37. Y. Luo, J. Wang, S. Yu, Y. Cao, K. Ma, Y. Pu, W. Zou, C. Tang, F. Gao, and L. Dong: Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation. J. Mater. Res. 33, 1268 (2018).

    CAS  Google Scholar 

  38. X. Lü, J. Shen, Z. Wu, J. Wang, and J. Xie: Deposition of Ag nanoparticles on g-C3N4 nanosheet by N,N-dimethylformamide: Soft synthesis and enhanced photocatalytic activity. J. Mater. Res. 29, 2170 (2014).

    Google Scholar 

  39. Q. Gu, Y. Liao, L. Yin, J. Long, X. Wang, and C. Xue: Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. Appl. Catal., B 165, 503 (2015).

    CAS  Google Scholar 

  40. Q. Gu, Z. Gao, and C. Xue: Self-Sensitized carbon nitride microspheres for long-lasting visible-light-driven hydrogen generation. Small 12, 3543 (2016).

    CAS  Google Scholar 

  41. Y. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky, and A. Thomas: From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661 (2013).

    CAS  Google Scholar 

  42. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang: Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun., 3, 1139 (2012). https://doi.org/10.1038/ncomms2152

    Google Scholar 

  43. Y. Cui, Y. Tang, and X. Wang: Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants. Mater. Lett. 161, 197 (2015).

    CAS  Google Scholar 

  44. S. Wang, Q. Yan, P. Dong, C. Zhao, Y. Wang, F. Liu, and L. Li: Morphology and band structure regulation of graphitic carbon nitride microspheres by solvothermal temperature to boost photocatalytic activity. Appl. Phys. A 124, 416 (2018).

    Google Scholar 

  45. Z. Zhang, J. Huang, M. Zhang, Q. Yuan, and B. Dong: Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal., B 163, 298 (2015).

    CAS  Google Scholar 

  46. J. Zhang, X. An, N. Lin, W. Wu, L. Wang, Z. Li, R. Wang, Y. Wang, J. Liu, and M. Wu: Engineering monomer structure of carbon nitride for the effective and mild photooxidation reaction. Carbon 100, 450 (2016).

    CAS  Google Scholar 

  47. Q. Gu, H. Sun, Z. Xie, Z. Gao, and C. Xue: MoS2-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation. Appl. Surf. Sci. 396, 1808 (2017).

    CAS  Google Scholar 

  48. Y. Li, M. Yang, Y. Xing, X. Liu, Y. Yang, X. Wang, and S. Song: Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small 13, 1701552 (2017).

    Google Scholar 

  49. H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu: Microstructure of carbon nitride affecting synergetic photocatalytic activity: Hydrogen bonds versus structural defects. Appl. Catal., B 204, 49 (2017).

    CAS  Google Scholar 

  50. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, and D. Han: Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal., B 187, 47 (2016).

    CAS  Google Scholar 

  51. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, and Z. Kang: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970 (2015).

    CAS  Google Scholar 

  52. X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M-T.F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, and P.M. Ajayan: High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 7, 1700025 (2017).

    Google Scholar 

  53. X. Bai, L. Wang, Y. Wang, W. Yao, and Y. Zhu: Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Appl. Catal., B 152–153, 262 (2014). https://doi.org/10.1016/j.apcatb.2014.01.046

    Google Scholar 

  54. W. Wu, J. Zhang, W. Fan, Z. Li, L. Wang, X. Li, Y. Wang, R. Wang, J. Zheng, M. Wu, and H. Zeng: Remedying defects in carbon nitride to improve both photooxidation and H2 generation efficiencies. ACS Catal. 6, 3365 (2016).

    CAS  Google Scholar 

  55. L. Ye, J. Liu, Z. Jiang, T. Peng, and L. Zan: Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal., B 142–143, 1 (2013).

    Google Scholar 

  56. Q. Hao, X. Niu, C. Nie, S. Hao, W. Zou, J. Ge, D. Chen, and W. Yao: A highly efficient g-C3N4/SiO2 heterojunction: The role of SiO2 in the enhancement of visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 31410 (2016). https://doi.org/10.1039/C6CP06122B

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Science and Technology Major Project (No. 2016ZX05040003) and the Fundamental Research Funds for the Central Universities (Nos. 17CX06027 and 18CX06068A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaocheng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., He, F., Dong, P. et al. Simultaneous morphology, band structure, and defect optimization of graphitic carbon nitride microsphere by the precursor concentration to boost photocatalytic activity. Journal of Materials Research 33, 3917–3927 (2018). https://doi.org/10.1557/jmr.2018.342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.342

Navigation