Skip to main content
Log in

Review of microstructure and micromechanism-based constitutive modeling of polycrystals with a low-symmetry crystal structure

  • Invited Feature Paper — Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Predictions of the mechanical response of polycrystalline metals and underlying microstructure evolution and deformation mechanisms are critically important for the manufacturing and design of metallic components, especially those made of new advanced metals that aim to outperform those in use today. In this review article, recent advancements in modeling deformation processing-microstructure evolution and in microstructure–property relationships of polycrystalline metals are covered. While some notable examples will use standard crystal plasticity models, such as self-consistent and Taylor-type models, the emphasis is placed on more advanced full-field models such as crystal plasticity finite elements and Green’s function-based models. These models allow for nonhomogeneity in the mechanical fields leading to greater insight and predictive capability at the mesoscale. Despite the strides made, it still remains a mesoscale modeling challenge to incorporate in the same model the role of influential microstructural features and the dynamics of underlying mechanisms. The article ends with recommendations for improvements in computational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. C.S. Barrett and M.A. Massalski: Structure of Metals (McGraw-Hill, New York, 1966).

    Google Scholar 

  2. G.I. Taylor: Plastic strain in metals. J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  3. R.J. Asaro: Crystal plasticity. J. Appl. Mech. 50, 921 (1983).

    Google Scholar 

  4. R.A. Lebensohn and C.N. Tomé: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611 (1993).

    CAS  Google Scholar 

  5. R.A. Lebensohn and C.N. Tomé: A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng., A 175, 71 (1994).

    Google Scholar 

  6. R.A. Lebensohn, C.N. Tomé, and P.P. Castaneda: Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos. Mag. 87, 4287 (2007).

    CAS  Google Scholar 

  7. A. Molinari, G.R. Canova, and S. Ahzi: A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35, 2983 (1987).

    CAS  Google Scholar 

  8. A. Molinari, S. Ahzi, and R. Kouddane: On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mech. Mater. 26, 43 (1997).

    Google Scholar 

  9. M. Zecevic, I.J. Beyerlein, and M. Knezevic: Coupling elasto-plastic self-consistent crystal plasticity and implicit finite elements: Applications to compression, cyclic tension-compression, and bending to large strains. Int. J. Plast. 93, 187 (2017).

    CAS  Google Scholar 

  10. M. Zecevic and M. Knezevic: Modeling of sheet metal forming based on implicit embedding of the elasto-plastic self-consistent formulation in shell elements: Application to cup drawing of AA6022-T4. JOM 69, 922 (2017).

    CAS  Google Scholar 

  11. M. Zecevic, R.J. McCabe, and M. Knezevic: Spectral database solutions to elasto-viscoplasticity within finite elements: Application to a cobalt-based FCC superalloy. Int. J. Plast. 70, 151 (2015).

    CAS  Google Scholar 

  12. C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Mechanical response of zirconium: I. Derivation of a polycrystal constitutive law and finite element analysis. Acta Mater. 49, 3085 (2001).

    Google Scholar 

  13. M. Knezevic, R.J. McCabe, R.A. Lebensohn, C.N. Tomé, C. Liu, M.L. Lovato, and B. Mihaila: Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals. J. Mech. Phys. Solid. 61, 2034 (2013).

    Google Scholar 

  14. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand: An experimental and analytical study of the evolution of crystallographic texturing in Fcc materials. Textures Microstruct. 14, 1031 (1991).

    Google Scholar 

  15. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand: Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos. Trans. R. Soc. London, Ser. A 341, 443 (1992).

    CAS  Google Scholar 

  16. R.A. Lebensohn, Y. Liu, and P. Ponte Castañeda: On the accuracy of the self-consistent approximation for polycrystals: Comparison with full-field numerical simulations. Acta Mater. 52, 5347 (2004).

    CAS  Google Scholar 

  17. E.J. Lieberman, R.A. Lebensohn, D.B. Menasche, C.A. Bronkhorst, and A.D. Rollett: Microstructural effects on damage evolution in shocked copper polycrystals. Acta Mater. 116, 270 (2016).

    CAS  Google Scholar 

  18. B. Liu, D. Raabe, F. Roters, P. Eisenlohr, and R.A. Lebensohn: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modell. Simul. Mater. Sci. Eng. 18, 085005 (2010).

    Google Scholar 

  19. R.A. Lebensohn, A.D. Rollett, and P. Suquet: Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63, 13 (2011).

    Google Scholar 

  20. P.A. Turner and C.N. Tomé: A study of residual stresses in Zircaloy-2 with rod texture. Acta Metall. Mater. 42, 4143 (1994).

    CAS  Google Scholar 

  21. M. Zecevic, M. Knezevic, I.J. Beyerlein, and C.N. Tomé: An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals. Mater. Sci. Eng., A 638, 262 (2015).

    CAS  Google Scholar 

  22. J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A 241, 376 (1957).

    Google Scholar 

  23. I.J. Beyerlein, X. Zhang, and A. Misra: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).

    CAS  Google Scholar 

  24. M. Arul Kumar, I.J. Beyerlein, R.J. McCabe, and C.N. Tomé: Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat. Commun. 7, 13826 (2016).

    Google Scholar 

  25. P. Van Houtte: Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall. Mater. 26, 591 (1978).

    Google Scholar 

  26. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks: A model for texture development dominated by deformation twinning: Application to zirconium alloys. Acta Metall. Mater. 39, 2667 (1991).

    Google Scholar 

  27. X. Wu, S.R. Kalidindi, C. Necker, and A.A. Salem: Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity a-titanium using a Taylor-type crystal plasticity model. Acta Mater. 55, 423 (2007).

    CAS  Google Scholar 

  28. G. Proust, C.N. Tomé, and G.C. Kaschner: Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater. 55, 2137 (2007).

    CAS  Google Scholar 

  29. C. Mareau and M.R. Daymond: Study of internal strain evolution in Zircaloy-2 using polycrystalline models: Comparison between a rate-dependent and a rate-independent formulation. Acta Mater. 58, 3313 (2010).

    CAS  Google Scholar 

  30. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009).

    CAS  Google Scholar 

  31. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Google Scholar 

  32. L. Capolungo, I.J. Beyerlein, G.C. Kaschner, and C.N. Tomé: On the interaction between slip dislocations and twins in HCP Zr. Mater. Sci. Eng., A 513–514, 42 (2009).

    Google Scholar 

  33. G. Proust, G.C. Kaschner, I.J. Beyerlein, B. Clausen, D.W. Brown, R.J. McCabe, and C.N. Tomé: Detwinning of high-purity zirconium: In situ neutron diffraction experiments. Exp. Mech. 50, 125 (2010).

    CAS  Google Scholar 

  34. B.C. De Cooman, Y. Estrin, and S.K. Kim: Twinning-induced plasticity (TWIP) steels. Acta Mater. 142, 283 (2018).

    Google Scholar 

  35. I.J. Beyerlein, R.J. McCabe, and C.N. Tomé: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solid. 59, 988 (2011).

    CAS  Google Scholar 

  36. S.R. Niezgoda, A.K. Kanjarla, I.J. Beyerlein, and C.N. Tomé: Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 56, 119 (2014).

    CAS  Google Scholar 

  37. H. Abdolvand and M.R. Daymond: Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach—Part I: Average behavior. J. Mech. Phys. Solid. 61, 783 (2013).

    CAS  Google Scholar 

  38. H. Abdolvand and M.R. Daymond: Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: Local behavior. J. Mech. Phys. Solid. 61, 803 (2013).

    CAS  Google Scholar 

  39. H. Abdolvand, M. Majkut, J. Oddershede, J.P. Wright, and M.R. Daymond: Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II—Crystal plasticity finite element modeling. Acta Mater. 93, 235 (2015).

    CAS  Google Scholar 

  40. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, and M. Knezevic: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy. Int. J. Plast. 83, 90 (2016).

    CAS  Google Scholar 

  41. M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, and T.M. Pollock: A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int. J. Plast. 74, 35 (2015).

    CAS  Google Scholar 

  42. M. Ardeljan, R.J. McCabe, I.J. Beyerlein, and M. Knezevic: Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 295, 396 (2015).

    Google Scholar 

  43. J. Cheng and S. Ghosh: A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int. J. Plast. 67, 148 (2015).

    CAS  Google Scholar 

  44. D.J. Savage, I.J. Beyerlein, and M. Knezevic: Coupled texture and non-Schmid effects on yield surfaces of body-centered cubic polycrystals predicted by a crystal plasticity finite element approach. Int. J. Solid Struct. 109, 22 (2017).

    Google Scholar 

  45. M.R. Tonks, J.F. Bingert, C.A. Bronkhorst, E.N. Harstad, and D.A. Tortorelli: Two stochastic mean-field polycrystal plasticity methods. J. Mech. Phys. Solid. 57, 1230 (2009).

    Google Scholar 

  46. P. Zhang, M. Karimpour, D. Balint, and J. Lin: Three-dimensional virtual grain structure generation with grain size control. Mech. Mater. 55, 89 (2012).

    Google Scholar 

  47. S.R. Kalidindi: Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solid. 46, 267 (1998).

    CAS  Google Scholar 

  48. K-J. Bathe: Finite Element Procedures (Prentice Hall, Englewood Cliffs, New Jersey, 1996); p. 1037.

    Google Scholar 

  49. M. Zecevic, R.J. McCabe, and M. Knezevic: A new implementation of the spectral crystal plasticity framework in implicit finite elements. Mech. Mater. 84, 114 (2015).

    Google Scholar 

  50. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solid. 40, 537 (1992).

    CAS  Google Scholar 

  51. S.R. Kalidindi, H.K. Duvvuru, and M. Knezevic: Spectral calibration of crystal plasticity models. Acta Mater. 54, 1795 (2006).

    CAS  Google Scholar 

  52. H. Moulinec and P. Suquet: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Meth. Appl. Mech. Eng. 157, 69 (1998).

    Google Scholar 

  53. R.A. Lebensohn, A.K. Kanjarla, and P. Eisenlohr: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 59–69 (2012).

    Google Scholar 

  54. R.A. Lebensohn, Y. Liu, and P.P. Castañeda: On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater. 52, 5347–5361 (2004).

    CAS  Google Scholar 

  55. S. Mercier and A. Molinari: Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. Int. J. Plast. 25, 1024 (2009).

    CAS  Google Scholar 

  56. R. Lebensohn: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater. 49, 2723 (2001).

    CAS  Google Scholar 

  57. R.A. Lebensohn, A.K. Kanjarla, and P. Eisenlohr: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 59 (2012).

    Google Scholar 

  58. B.L. Hansen, I.J. Beyerlein, C.A. Bronkhorst, E.K. Cerreta, and D. Denis-Koller: A dislocation-based multi-rate single crystal plasticity model. Int. J. Plast. 44, 129–146 (2013).

    CAS  Google Scholar 

  59. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 58, 6230 (2010).

    CAS  Google Scholar 

  60. C. Miehe, J. Schröder, and J. Schotte: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Meth. Appl. Mech. Eng. 171, 387 (1999).

    Google Scholar 

  61. A.J. Beaudoin, P.R. Dawson, K.K. Mathur, U.F. Kocks, and D.A. Korzekwa: Application of polycrystal plasticity to sheet forming. Comput. Meth. Appl. Mech. Eng. 117, 49 (1994).

    Google Scholar 

  62. G.B. Sarma and P.R. Dawson: Texture predictions using a polycrystal plasticity model incorporating neighbor interactions. Int. J. Plast. 12, 1023 (1996).

    CAS  Google Scholar 

  63. M. Ardeljan, I.J. Beyerlein, and M. Knezevic: A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites. J. Mech. Phys. Solid. 66, 16 (2014).

    CAS  Google Scholar 

  64. G.B. Sarma and P.R. Dawson: Effects of interactions among crystals on the inhomogeneous deformations of polycrystals. Acta Mater. 44, 1937 (1996).

    CAS  Google Scholar 

  65. D.P. Mika and P.R. Dawson: Effects of grain interaction on deformation in polycrystals. Mater. Sci. Eng., A 257, 62 (1998).

    Google Scholar 

  66. L. Delannay, P.J. Jacques, and S.R. Kalidindi: Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int. J. Plast. 22, 1879 (2006).

    CAS  Google Scholar 

  67. H. Ritz and P. Dawson: Sensitivity to grain discretization of the simulated crystal stress distributions in FCC polycrystals. Modell. Simul. Mater. Sci. Eng. 17, 015001 (2008).

    Google Scholar 

  68. Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, and R. Radovitzky: Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int. J. Plast. 24, 2278 (2008).

    CAS  Google Scholar 

  69. S.R. Kalidindi, A. Bhattacharya, and R. Doherty: Detailed analysis of plastic deformation in columnar polycrystalline aluminum using orientation image mapping and crystal plasticity models. Proc. R. Soc. London, Ser. A 460, 1935 (2004).

    CAS  Google Scholar 

  70. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int. J. Plast. 21, 691 (2005).

    CAS  Google Scholar 

  71. M. Shenoy, Y. Tjiptowidjojo, and D. McDowell: Microstructure-sensitive modeling of polycrystalline IN 100. Int. J. Plast. 24, 1694 (2008).

    CAS  Google Scholar 

  72. H. Lim, J.D. Carroll, C.C. Battaile, T.E. Buchheit, B.L. Boyce, and C.R. Weinberger: Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int. J. Plast. 60, 1 (2014).

    CAS  Google Scholar 

  73. M. Ardeljan, D.J. Savage, A. Kumar, I.J. Beyerlein, and M. Knezevic: The plasticity of highly oriented nano-layered Zr/Nb composites. Acta Mater. 115, 189 (2016).

    CAS  Google Scholar 

  74. M. De Berg, M. Van Kreveld, M. Overmars, and O.C. Schwarzkopf: Computational Geometry (Springer, Berlin Heidelberg, 2000).

    Google Scholar 

  75. B. Boots: The arrangement of cells in “random” networks. Metallography 15, 53 (1982).

    CAS  Google Scholar 

  76. D. Aboav: The arrangement of grains in a polycrystal. Metallography 3, 383 (1970).

    CAS  Google Scholar 

  77. DREAM.3D Version 4.2: BlueQuartz Software (Springboro, Ohio, 2013).

    Google Scholar 

  78. M.A. Groeber and M.A. Jackson: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Int. Mater. Manu. Innov. 3, 5 (2014).

    Google Scholar 

  79. M. Knezevic, B. Drach, M. Ardeljan, and I.J. Beyerlein: Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 277, 239 (2014).

    Google Scholar 

  80. M. Ardeljan and M. Knezevic: Explicit modeling of double twinning in AZ31 using crystal plasticity finite elements for predicting the mechanical fields for twin variant selection and fracture analyses. Acta Mater. 157, 339 (2018).

    CAS  Google Scholar 

  81. T.J. Barrett, D.J. Savage, M. Ardeljan, and M. Knezevic: An automated procedure for geometry creation and finite element mesh generation: Application to explicit grain structure models and machining distortion. Comput. Mater. Sci. 141 (Suppl. C), 269 (2018).

    CAS  Google Scholar 

  82. C. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: The relation between macroscopic and microscopic strain hardening in FCC polycrystals. Acta Metall. 32, 1637 (1984).

    Google Scholar 

  83. I.J. Beyerlein and C.N. Tomé: A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. Plast. 24, 867 (2008).

    CAS  Google Scholar 

  84. L. Capolungo, I.J. Beyerlein, and C.N. Tomé: Slip-assisted twin growth in hexagonal close-packed metals. Scripta Mater. 60, 32 (2009).

    CAS  Google Scholar 

  85. R.A. Lebensohn, P.P. Castañeda, R. Brenner, and O. Castelnau: Full-field versus homogenization methods to predict microstructure–property relations for polycrystalline materials. In Computational Methods for Microstructure–Property Relationships, S. Ghosh and D. Dimiduk, eds. (Springer, Boston, MA, 2011).

    Google Scholar 

  86. I. Beyerlein, L. Capolungo, P. Marshall, R. McCabe, and C. Tomé: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 2161 (2010).

    CAS  Google Scholar 

  87. L. Capolungo, P. Marshall, R. McCabe, I. Beyerlein, and C. Tomé: Nucleation and growth of twins in Zr: A statistical study. Acta Mater. 57, 6047 (2009).

    CAS  Google Scholar 

  88. M.A. Meyers, U.R. Andrade, and A.H. Chokshi: The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall. Mater. Trans. A 26, 2881 (1995).

    Google Scholar 

  89. I.J. Beyerlein and C.N. Tomé: A probabilistic twin nucleation model for HCP polycrystalline metals. Proc. R. Soc. A 466, 2517 (2010).

    CAS  Google Scholar 

  90. I.J. Beyerlein, R.J. McCabe, and C.N. Tome: Stochastic processes of 1012 deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int. J. Multiscale Comput. Eng. 9, 459 (2011).

    CAS  Google Scholar 

  91. M. Lentz, M. Risse, N. Schaefer, W. Reimers, and I. Beyerlein: Strength and ductility with \(\left\{{10\bar 11} \right\}\)\(\left\{{10\bar 12} \right\}\) double twinning in a magnesium alloy. Nat. Commun. 7, 1 (2016).

    Google Scholar 

  92. A. Rollett, R. Lebensohn, M. Groeber, Y. Choi, J. Li, and G. Rohrer: Stress hot spots in viscoplastic deformation of polycrystals. Modell. Simul. Mater. Sci. Eng. 18, 074005 (2010).

    Google Scholar 

  93. U.F. Kocks, C.N. Tomé, and H-R. Wenk: Texture and Anisotropy (Cambridge University Press, Cambridge, U.K., 1998).

    Google Scholar 

  94. M. Zecevic, M. Knezevic, I.J. Beyerlein, and R.J. McCabe: Origin of texture development in orthorhombic uranium. Mater. Sci. Eng., A 665, 108 (2016).

    CAS  Google Scholar 

  95. M. Knezevic, J. Crapps, I.J. Beyerlein, D.R. Coughlin, K.D. Clarke, and R.J. McCabe: Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements. Int. J. Mech. Sci. 105, 227 (2016).

    Google Scholar 

  96. M.H. Yoo: Slip modes of alpha uranium. J. Nucl. Mater. 26, 307 (1968).

    CAS  Google Scholar 

  97. J.S. Daniel, B. Lesage, and P. Lacombe: The influence of temperature on slip and twinning in uranium. Acta Metall. 19, 163 (1971).

    CAS  Google Scholar 

  98. R.W. Cahn: Twinning and slip in a-uranium. Acta Crystallogr. 4, 470 (1951).

    CAS  Google Scholar 

  99. R.W. Cahn: Plastic deformation of alpha-uranium; twinning and slip. Acta Metall. 1, 49 (1953).

    CAS  Google Scholar 

  100. R.G. Anderson and J.W. Bishop: The effect of neutron irradiation and thermal cycling on permanent deformations in uranium under load. In Symposium on Uranium and Graphite (1962); p. 17.

    Google Scholar 

  101. E.S. Fisher and H.J. McSkimin: Adiabatic elastic moduli of single crystal alpha uranium. J. Appl. Phys. 29, 1473 (1958).

    CAS  Google Scholar 

  102. A.D. Rollett: Comparison of experimental and theoretical texture development in alpha-uranium. In Symposium on Modeling the Deformation of Crystalline Solids, TMS, T.C. Lowe, A.D. Rollett, P.S. Follansbee, and G.S. Daehn, eds. (1991); p. 361.

    Google Scholar 

  103. R.J. McCabe, L. Capolungo, P.E. Marshall, C.M. Cady, and C.N. Tomé: Deformation of wrought uranium: Experiments and modeling. Acta Mater. 58, 5447 (2010).

    CAS  Google Scholar 

  104. D.W. Brown, M.A.M. Bourke, B. Clausen, D.R. Korzekwa, R.C. Korzekwa, R.J. McCabe, T.A. Sisneros, and D.F. Teter: Temperature and direction dependence of internal strain and texture evolution during deformation of uranium. Mater. Sci. Eng., A 512, 67 (2009).

    Google Scholar 

  105. C.S. Choi and M. Staker: Neutron diffraction texture study of deformed uranium plates. J. Mater. Sci. 31, 3397 (1996).

    CAS  Google Scholar 

  106. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng: Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mater. Sci. Eng., A 527, 3073 (2010).

    Google Scholar 

  107. D. Yang, P. Cizek, P. Hodgson, and C.e. Wen: Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr. Mater. 62, 321 (2010).

    CAS  Google Scholar 

  108. C.A. Bronkhorst, J.R. Mayeur, I.J. Beyerlein, H.M. Mourad, B.L. Hansen, N.A. Mara, J.S. Carpenter, R.J. McCabe, and S.D. Sintay: Meso-scale modeling the orientation and interface stability of Cu/Nb-layered composites by rolling. JOM 65, 431 (TMS Warrendale, PA, 2013).

    Google Scholar 

  109. B.L. Hansen, J.S. Carpenter, S.D. Sintay, C.A. Bronkhorst, R.J. McCabe, J.R. Mayeur, H.M. Mourad, I.J. Beyerlein, N.A. Mara, S.R. Chen, and G.T. Gray, III: Modeling the texture evolution of Cu/Nb layered composites during rolling. Int. J. Plast. 49, 71 (2013).

    CAS  Google Scholar 

  110. J. Mayeur, I. Beyerlein, C. Bronkhorst, and H. Mourad: The influence of grain interactions on the plastic stability of heterophase interfaces. Mater 7, 302 (2014).

    Google Scholar 

  111. J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, and H.M. Mourad: Incorporating interface affected zones into crystal plasticity. Int. J. Plast. 65, 206 (2015).

    CAS  Google Scholar 

  112. J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, H.M. Mourad, and B.L. Hansen: A crystal plasticity study of heterophase interface character stability of Cu/Nb bicrystals. Int. J. Plast. 48, 72 (2013).

    CAS  Google Scholar 

  113. N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao: Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 60, 3415 (2012).

    CAS  Google Scholar 

  114. J. Carpenter, T. Nizolek, R. McCabe, S. Zheng, J. Scott, S. Vogel, N. Mara, T. Pollock, and I. Beyerlein: The suppression of instabilities via biphase interfaces during bulk fabrication of nanograined Zr. Mater. Res. Lett. 3, 50 (2015).

    Google Scholar 

  115. J.S. Carpenter, T. Nizolek, R.J. McCabe, M. Knezevic, S.J. Zheng, B.P. Eftink, J.E. Scott, S.C. Vogel, T.M. Pollock, N.A. Mara, and I.J. Beyerlein: Bulk texture evolution of nanolamellar Zr–Nb composites processed via accumulative roll bonding. Acta Mater. 92, 97 (2015).

    CAS  Google Scholar 

  116. C. Wang and R. Li: Effect of double aging treatment on structure in Inconel 718 alloy. J. Mater. Sci. 39, 2593 (2004).

    CAS  Google Scholar 

  117. C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai: Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng., A 510–511, 289 (2009).

    Google Scholar 

  118. S. Ghorbanpour, M. Zecevic, A. Kumar, M. Jahedi, J. Bicknell, L. Jorgensen, I.J. Beyerlein, and M. Knezevic: A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718. Int. J. Plast. 99 (Suppl. C), 162 (2017).

    CAS  Google Scholar 

  119. D.S. Li, H. Garmestani, and S. Schoenfeld: Evolution of crystal orientation distribution coefficients during plastic deformation. Scripta Mater. 49, 867 (2003).

    CAS  Google Scholar 

  120. M. Knezevic and S.R. Kalidindi: Fast computation of first-order elastic-plastic closures for polycrystalline cubic-orthorhombic microstructures. Comput. Mater. Sci. 39, 643 (2007).

    CAS  Google Scholar 

  121. M. Knezevic and N.W. Landry: Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics. Mech. Mater. 88, 73 (2015).

    Google Scholar 

  122. M. Jahedi, M.H. Paydar, S. Zheng, I.J. Beyerlein, and M. Knezevic: Texture evolution and enhanced grain refinement under high-pressure-double-torsion. Mater. Sci. Eng., A 611, 29 (2014).

    CAS  Google Scholar 

  123. A. Eghtesad, T.J. Barrett, and M. Knezevic: Compact reconstruction of orientation distributions using generalized spherical harmonics to advance large-scale crystal plasticity modeling: Verification using cubic, hexagonal, and orthorhombic polycrystals. Acta Mater. 155, 418 (2018).

    CAS  Google Scholar 

  124. M. Knezevic, H.F. Al-Harbi, and S.R. Kalidindi: Crystal plasticity simulations using discrete Fourier transforms. Acta Mater. 57, 1777 (2009).

    CAS  Google Scholar 

  125. H.F. Al-Harbi, M. Knezevic, and S.R. Kalidindi: Spectral approaches for the fast computation of yield surfaces and first-order plastic property closures for polycrystalline materials with cubic-triclinic textures. Comput. Mater. Continua 15, 153 (2010).

    Google Scholar 

  126. M. Knezevic, S.R. Kalidindi, and D. Fullwood: Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals. Int. J. Plast. 24, 1264 (2008).

    CAS  Google Scholar 

  127. S.R. Kalidindi, M. Knezevic, S. Niezgoda, and J. Shaffer: Representation of the orientation distribution function and computation of first-order elastic properties closures using discrete Fourier transforms. Acta Mater. 57, 3916 (2009).

    CAS  Google Scholar 

  128. N. Landry and M. Knezevic: Delineation of first-order elastic property closures for hexagonal metals using fast Fourier transforms. Materials 8, 6326 (2015).

    Google Scholar 

  129. N.R. Barton, J. Knap, A. Arsenlis, R. Becker, R.D. Hornung, and D.R. Jefferson: Embedded polycrystal plasticity and adaptive sampling. Int. J. Plast. 24, 242 (2008).

    CAS  Google Scholar 

  130. N.R. Barton, J.V. Bernier, R.A. Lebensohn, and D.E. Boyce: The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity. Comput. Meth. Appl. Mech. Eng. 283, 224 (2015).

    Google Scholar 

  131. H-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods (Cuvillier Verlag, London, 1993).

    Google Scholar 

  132. P. Van Houtte: Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials. Int. J. Plast. 10, 719 (1994).

    Google Scholar 

  133. B. Mihaila, M. Knezevic, and A. Cardenas: Three orders of magnitude improved efficiency with high—Performance spectral crystal plasticity on GPU platforms. Int. J. Numer. Meth. Eng. 97, 785 (2014).

    Google Scholar 

  134. D.J. Savage and M. Knezevic: Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware. Comput. Mech. 56, 677 (2015).

    Google Scholar 

  135. Y. Mellbin, H. Hallberg, and M. Ristinmaa: Accelerating crystal plasticity simulations using GPU multiprocessors. Int. J. Numer. Meth. Eng. 100, 111 (2014).

    Google Scholar 

  136. M. Knezevic and D.J. Savage: A high-performance computational framework for fast crystal plasticity simulations. Comput. Mater. Sci. 83, 101 (2014).

    Google Scholar 

  137. H.F. Alharbi and S.R. Kalidindi: Crystal plasticity finite element simulations using a database of discrete Fourier transforms. Int. J. Plast. 66, 71 (2015).

    Google Scholar 

  138. I. Beyerlein, S. Li, C. Necker, D. Alexander, and C. Tomé: Non-uniform microstructure and texture evolution during equal channel angular extrusion. Philos. Mag. 85, 1359 (2005).

    CAS  Google Scholar 

  139. M. Knezevic, M.R. Daymond, and I.J. Beyerlein: Modeling discrete twin lamellae in a microstructural framework. Scripta Mater. 121, 84 (2016).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the U.S. National Science Foundation (NSF) under Grant Nos. CMMI-1728224 (UCSB) and CMMI-1727495 (UNH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene J. Beyerlein.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyerlein, I.J., Knezevic, M. Review of microstructure and micromechanism-based constitutive modeling of polycrystals with a low-symmetry crystal structure. Journal of Materials Research 33, 3711–3738 (2018). https://doi.org/10.1557/jmr.2018.333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.333

Navigation