Skip to main content
Log in

Low-temperature synthesis and microwave absorbing properties of Mn3O4–graphene nanocomposite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A low-temperature synthesis method for Mn3O4/graphene is described in this research. Adjusting the reaction time and temperature allows control over the phase and morphology of the synthesized manganese oxide, and therefore the microwave absorbing properties. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and vector network analysis are used to characterize the phase, morphology, and electromagnetic properties. The results reveal that long reaction time can increase the particle size and high temperature can destroy the initial structure of graphene both of which have negative impact on the microwave absorbing properties. The Mn3O4–graphene composite synthesized in 140 °C for 4 h shows a maximum reflection loss (RL) reaching −20 dB at 14.4 GHz with absorber thickness of 2 mm, as well as an effective absorption bandwidth of more than 5 dB corresponding to RL below −10 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen: Broadband and tunable high‐performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049 (2015).

    CAS  Google Scholar 

  2. Z. Yang, H. Lv, and R. Wu: Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671 (2016).

    CAS  Google Scholar 

  3. A. Baykal, Y. Köseoğlu, and M. Şenel: Low temperature synthesis and characterization of Mn3O4 nanoparticles. Cent. Eur. J. Chem. 5, 169 (2007).

    CAS  Google Scholar 

  4. B. Wei, L. Wang, Q. Miao, Y. Yuan, P. Dong, R. Vajtai, and W. Fei: Fabrication of manganese oxide/three-dimensional reduced graphene oxide composites as the supercapacitors by a reverse microemulsion method. Carbon 85, 249 (2015).

    CAS  Google Scholar 

  5. D.K. Pappas, T. Boningari, P. Boolchand, and P.G. Smirniotis: Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. J. Catal. 334, 1 (2016).

    CAS  Google Scholar 

  6. S. Wang, B. Gao, Y. Li, A. Mosa, A.R. Zimmerman, L.Q. Ma, W.G. Harris, and K.W. Migliaccio: Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol. 181, 13 (2015).

    CAS  Google Scholar 

  7. A. Elder, R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, and J. Finkelstein: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172 (2006).

    CAS  Google Scholar 

  8. C-C. Hu and T-W. Tsou: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4, 105 (2002).

    CAS  Google Scholar 

  9. P.R. Jothi, M. Pramanik, C. Li, S. Kannan, V. Malgras, R.R. Salunkhe, and Y. Yamauchi: Controlled synthesis of highly crystallized mesoporous Mn2O3 and Mn3O4 by using anionic surfactants. Chem.—Asian J. 11, 667 (2016).

    CAS  Google Scholar 

  10. V.C. Bose, K. Maniammal, G. Madhu, C. Veenas, A.A. Raj, and V. Biju: DC electrical conductivity of nanocrystalline Mn3O4 synthesized through a novel sol–gel route. In IOP Conference Series: Materials Science and Engineering, Vol. 73 (IOP Publishing, Bristol, England, 2015); p. 012084.

    Google Scholar 

  11. Y-F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, and E. Widjaja: Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J. Phys. Chem. B 110, 24450 (2006).

    CAS  Google Scholar 

  12. P. Kharade, S. Chavan, S. Mane, P. Joshi, and D. Salunkhe: Synthesis and characterization of galvanostatically deposited Cr2O3, Mn3O4, Cr2O3/Mn3O4 layered composite thin film for supercapacitor application. J. Chin. Adv. Mater. Soc. 4, 1 (2016).

    CAS  Google Scholar 

  13. D. Yan, S. Cheng, R. Zhuo, J. Chen, J. Feng, H. Feng, H. Li, Z. Wu, J. Wang, and P. Yan: Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009).

    CAS  Google Scholar 

  14. L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang, L. Liu, X. Ren, and H. Yang: Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2, 14940 (2014).

    CAS  Google Scholar 

  15. H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng: Cross‐stacking aligned carbon‐nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120 (2014).

    CAS  Google Scholar 

  16. C. Hu, Z. Mou, G. Lu, N. Chen, Z. Dong, M. Hu, and L. Qu: 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 15, 13038 (2013).

    CAS  Google Scholar 

  17. D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, and G.L. Graff: Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587 (2010).

    CAS  Google Scholar 

  18. X. Wang, S.M. Tabakman, and H. Dai: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152 (2008).

    CAS  Google Scholar 

  19. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F.Y. Boey, Q. Yan, P. Chen, and H. Zhang: In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842 (2009).

    CAS  Google Scholar 

  20. H-L. Xu, H. Bi, and R-B. Yang: Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111, 07A522 (2012).

    Google Scholar 

  21. X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, and Z. Liu: A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 5, 199 (2012).

    CAS  Google Scholar 

  22. H. Kim, S-W. Kim, Y-U. Park, H. Gwon, D-H. Seo, Y. Kim, and K. Kang: SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 3, 813 (2010).

    CAS  Google Scholar 

  23. H. Wang, C.M. Holt, Z. Li, X. Tan, B.S. Amirkhiz, Z. Xu, B.C. Olsen, T. Stephenson, and D. Mitlin: Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 5, 605 (2012).

    CAS  Google Scholar 

  24. Q. Yang, L. Liu, D. Hui, and M. Chipara: Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites. Composites, Part B 87, 256 (2016).

    CAS  Google Scholar 

  25. A.A. Amer, S. Reda, M. Mousa, and M.M. Mohamed: Mn3O4/graphene nanocomposites: Outstanding performances as highly efficient photocatalysts and microwave absorbers. RSC Adv. 7, 826 (2017).

    CAS  Google Scholar 

  26. Y. Long, J. Xie, H. Li, Z. Liu, and Y. Xie: Solvothermal synthesis, electromagnetic and electrochemical properties of jellylike cylinder graphene–Mn3O4 composite with highly coupled effect. J. Solid State Chem. 256, 256 (2017).

    CAS  Google Scholar 

  27. Y. Wang, H. Guan, C. Dong, X. Xiao, S. Du, and Y. Wang: Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42, 936 (2016).

    CAS  Google Scholar 

  28. J-G. Wang, D. Jin, R. Zhou, X. Li, X-r. Liu, C. Shen, K. Xie, B. Li, F. Kang, and B. Wei: Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10, 6227 (2016).

    CAS  Google Scholar 

  29. G.C. Silva, F.S. Almeida, A.M. Ferreira, and V.S.T. Ciminelli: Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of as (III) from aqueous solutions. Mater. Res. 15, 403 (2012).

    CAS  Google Scholar 

  30. G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, and L. Mao: Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19, 275709 (2008).

    Google Scholar 

  31. A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno, M.E. Mata-Zamora, F. Morales-Leal, A.L. Fernández-Osorio, and J.M. Saniger: One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study. J. Colloid Interface Sci. 291, 175 (2005).

    Google Scholar 

  32. H-P. Cong, X-C. Ren, P. Wang, and S-H. Yu: Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693 (2012).

    CAS  Google Scholar 

  33. S. Wakeland, R. Martinez, J.K. Grey, and C.C. Luhrs: Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon 48, 3463 (2010).

    CAS  Google Scholar 

  34. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, and F. Wei: Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366 (2011).

    CAS  Google Scholar 

  35. L. Li, Z. Hu, Y. Yang, P. Liang, A. Lu, H. Xu, Y. Hu, and H. Wu: Hydrothermal self‐assembly synthesis of Mn3O4/reduced graphene oxide hydrogel and its high electrochemical performance for supercapacitors. Chin. J. Chem. 31, 1290 (2013).

    CAS  Google Scholar 

  36. H-M. Lee, G.H. Jeong, D.W. Kang, S-W. Kim, and C-K. Kim: Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 281, 44 (2015).

    CAS  Google Scholar 

  37. Y. Liu, T. Cui, T. Wu, Y. Li, and G. Tong: Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 27, 165707 (2016).

    Google Scholar 

  38. Y. Duan, J. Liu, Y. Zhang, and T. Wang: First-principles calculations of graphene-based polyaniline nano-hybrids for insight of electromagnetic properties and electronic structures. RSC Adv. 6, 73915 (2016).

    CAS  Google Scholar 

  39. Y. Duan, H. Pang, Y. Zhang, J. Chen, and T. Wang: Morphology-controlled synthesis and microwave absorption properties of β-MnO2 microncube with rectangular pyramid. Mater. Charact. 112, 206 (2016).

    CAS  Google Scholar 

  40. H. Yang, T. Ye, Y. Lin, J. Zhu, and F. Wang: Microwave absorbing properties of the ferrite composites based on graphene. J. Alloys Compd. 683, 567 (2016).

    CAS  Google Scholar 

  41. R.S. Alam, M. Moradi, and H. Nikmanesh: Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites. Mater. Res. Bull. 73, 261 (2016).

    CAS  Google Scholar 

  42. Y. Li, T. Wu, K. Jin, Y. Qian, N. Qian, K. Jiang, W. Wu, and G. Tong: Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods. Appl. Surf. Sci. 387, 190 (2016).

    CAS  Google Scholar 

  43. Y. Chen, A. Zhang, L. Ding, Y. Liu, and H. Lu: A three-dimensional absorber hybrid with polar oxygen functional groups of MWNTs/graphene with enhanced microwave absorbing properties. Composites, Part B 108, 386 (2017).

    CAS  Google Scholar 

  44. Z. Liu, X. Zhou, Y. Zhang, Q. Liu, Q. Liu, B. Li, G. Zhu, D. Li, and X. Li: Fabrication of monodispersed, uniform rod-shaped FeCO3/CoCO3 microparticles using a facile solvothermal method and their excellent microwave absorbing properties. J. Alloys Compd. 665, 388 (2016).

    CAS  Google Scholar 

  45. H. Wang, L. Wan, J. Zhang, Y. Chen, W. Hu, L. Liu, C. Zhong, and Y. Deng: Enhanced microwave absorbing properties of surface-modified Co–Ni–P nanotubes. Mater. Lett. 169, 193 (2016).

    CAS  Google Scholar 

  46. J. Xiang, X. Zhang, Q. Ye, J. Li, and X. Shen: Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption. Mater. Res. Bull. 60, 589 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by Program for the National Natural Science Foundation of China (No. 51577021) and the Fundamental Research Funds for the Central Universities (DUT17GF107). The authors also acknowledge support from Dr. Ishwar K. Puri and Dr. Rakesh P. Sahu in McMaster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, H., Duan, Y., Liu, J. et al. Low-temperature synthesis and microwave absorbing properties of Mn3O4–graphene nanocomposite. Journal of Materials Research 33, 4062–4070 (2018). https://doi.org/10.1557/jmr.2018.325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.325

Navigation