High-entropy functional materials

Abstract

While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. Perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    CAS  Google Scholar 

  2. 2.

    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Google Scholar 

  3. 3.

    M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  CAS  Google Scholar 

  5. 5.

    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, 2016).

    Google Scholar 

  6. 6.

    D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    CAS  Google Scholar 

  7. 7.

    J.W. Yeh: Physical metallurgy. In High Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 51.

    Google Scholar 

  8. 8.

    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    S. Gorsse, D.B. Miracle, and O.N. Senkov: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    C.C. Koch: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    J.W. Yeh, S.K. Chen, H.C. Shih, Y. Zhang, and T.T. Zuo: Functional properties. In High Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 237.

    Google Scholar 

  12. 12.

    A. Perrin, M. Sorescu, M.T. Burton, D.E. Laughlin, and M. McHenry: The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys. JOM 69, 2125 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Yuan, Y. Wu, X. Tong, H. Zhang, H. Wang, X.J. Liu, L. Ma, H.L. Suo, and Z.P. Lu: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    S. Shafeie, S. Guo, Q. Hu, H. Fahlquist, P. Erhart, and A. Palmqvist: High-entropy alloys as high-temperature thermoelectric materials. J. Appl. Phys. 118, 184905 (2015).

    Article  CAS  Google Scholar 

  15. 15.

    Z. Fan, H. Wang, Y. Wu, X.J. Liu, and Z.P. Lu: Thermoelectric performance of PbSnTeSe high-entropy alloys. Mater. Res. Lett. 5, 187 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Fan, H. Wang, Y. Wu, X.J. Liu, and Z.P. Lu: Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Adv. 6, 52164 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Shi, B. Yang, and P.K. Liaw: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, and N. Birbilis: Corrosion of high entropy alloys. npj Mater. Degrad. 1, 15 (2017).

    Article  Google Scholar 

  19. 19.

    A.A. Rodriguez, J. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, and J.A. Hawk: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions. Adv. Mater. Sci. Eng. 2018, 3016304 (2017).

    Google Scholar 

  20. 20.

    J.W. Yeh, S.J. Lin, M.H. Tsai, and S.Y. Chang: High-entropy coatings. In High Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 469.

    Google Scholar 

  21. 21.

    J.W. Yeh, A.C. Yeh, and S.Y. Chang: Potential applications and prospects. In High Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 493.

    Google Scholar 

  22. 22.

    X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 8359 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang: Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys Compd. 502, 295 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    M.S. Lucas, L. Mauger, J.A. Munoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).

    Article  CAS  Google Scholar 

  27. 27.

    L. Liu, J.B. Zhu, J.C. Li, and Q. Jiang: Microstructure and magnetic properties of FeNiCuMnTiSnx high entropy alloys. Adv. Engin. Mater. 14, 919 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    S.G. Ma and Y. Zhang: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).

    Article  CAS  Google Scholar 

  30. 30.

    T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater. 20, 549 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    J. Wang, Z. Zheng, J. Xu, and Y. Wang: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 58 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    T.T. Zuo, R.B. Li, X.J. Ren, and Y. Zhang: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 60 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    T.T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    T.L. Qi, Y.H. Li, A. Takeuchi, G.Q. Xie, H.T. Miao, and W. Zhang: Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses. Intermetallics 66, 8 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    S. Huang, W. Li, X.Q. Li, S. Schonecker, L. Bergqvist, E. Holmstrom, L.K. Varga, and L. Vitos: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 71 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, and R.P. Liu: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    P-C. Lin, C-Y. Cheng, J-W. Yeh, and T-S. Chin: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films. Entropy 18, 308 (2016).

    Article  CAS  Google Scholar 

  40. 40.

    A.J. Zaddach, C. Niu, A.A. Oni, M. Fan, J.M. LeBeau, D.L. Irving, and C.C. Koch: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy. Intermetallics 68, 107 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    P.P. Li, A.D. Wang, and C.T. Liu: A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 694, 55 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    R. Wei, J. Tao, H. Sun, C. Chen, G.W. Sun, and F.S. Li: Soft magnetic Fe26.7Co26.7Ni26.6Si9B11 high entropy metallic glass with good bending ductility. Mater. Lett. 197, 87 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    R. Wei, H. Sun, C. Chen, Z.H. Han, and F.S. Li: Effect of cooling rate on the phase structure and magnetic properties of Fe26.7Co28.5Ni28.5Si4.6B8.7P3 high entropy alloy. J. Magn. Magn. Mater. 435, 184 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    R.K. Mishra and R.R. Shahi: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys. J. Magn. Magn. Mater. 442, 218 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    P.P. Li, A.D. Wang, and C.T. Liu: Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys. Intermetallics 87, 21 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, and Y. Zhang: Tailoring magnetic behaviors of CoFeMnNiX (X = Al, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surf. Interfaces 9, 36 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, and L.Y. Yu: The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x = 0–1.2) high-entropy alloys. J. Alloys Compd. 693, 1061 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    O. Schneeweiss, M. Friak, M. Dudova, D. Holec, M. Sob, D. Kriegner, V. Holy, P. Beran, E.P. George, J. Neugebauer, and A. Dlouhy: Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 014437 (2017).

    Article  Google Scholar 

  50. 50.

    Z. Li, H. Xu, Y. Gu, M. Pan, L. Yu, X. Tan, and X. Hou: Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) high-entropy alloys. J. Alloy. Comp. 746, 285 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    J.W. Yeh: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    G. Herzer: Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718 (2013).

    CAS  Article  Google Scholar 

  54. 54.

    M.S. Lucas, D. Belyea, C. Bauer, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Horwath, S.L. Semiatin, M.E. McHenry, and C.W. Miller: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).

    Article  CAS  Google Scholar 

  55. 55.

    D. Ma, B. Grabowski, F. Kormann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).

    CAS  Article  Google Scholar 

  56. 56.

    S. Huang, E. Holmström, O. Eriksson, and L. Vitos: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    F. Körmann, T. Hickel, and J. Neugebauer: Influence of magnetic excitations on the phase stability of metals and steels. Curr. Opin. Solid State Mater. Sci. 20, 77 (2016).

    Article  CAS  Google Scholar 

  58. 58.

    F. Körmann, D. Ma, D.D. Belyea, M.S. Lucas, C.W. Miller, B. Grabowski, and M.H.F. Sluiter: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 107, 142404 (2015).

    Article  CAS  Google Scholar 

  59. 59.

    D.D. Belyea, M.S. Lucas, E. Michel, J. Horwath, and C.W. Miller: Tunable magnetocaloric effect in transition metal alloys. Sci. Rep. 5, 15755 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, and Z.H. Cheng: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545 (2009).

    CAS  Article  Google Scholar 

  61. 61.

    J. Shen, Y.X. Li, J.R. Sun, and B.G. Shen: Effect of R substitution on magnetic properties and magnetocaloric effects of La1− xRxFe11.5Si1.5 compounds with R = Ce, Pr, and Nd. Chin. Phys. B 18, 2058 (2009).

    CAS  Article  Google Scholar 

  62. 62.

    K. Jin and H. Bei: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance. Front. Mater. 5, 1 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, and H. Bei: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    CAS  Article  Google Scholar 

  65. 65.

    Y.W. Zhang, G.M. Stocks, K. Jin, C.Y. Lu, H.B. Bei, B.C. Sales, L.M. Wang, L.K. Beland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, and W.J. Weber: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).

    CAS  Article  Google Scholar 

  68. 68.

    D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  CAS  Google Scholar 

  69. 69.

    Z-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou: Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci.: Mater. Int. 22, 535 (2012).

    Article  Google Scholar 

  70. 70.

    Y.Z. Pei, H. Wang, and G.J. Snyder: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    G.J. Tan, F.Y. Shi, S.Q. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    R. Orabi, J. Hwang, C.C. Lin, R. Gautier, B. Fontaine, W. Kim, J.S. Rhyee, D. Wee, and M. Fornari: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe:Ga materials. Chem. Mater. 29, 612 (2017).

    Article  CAS  Google Scholar 

  73. 73.

    R.H. Liu, H.Y. Chen, K.P. Zhao, Y.T. Qin, B.B. Jiang, T.S. Zhang, G. Sha, X. Shi, C. Uher, W.Q. Zhang, and L.D. Chen: Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater. 29, 1702712 (2017).

    Article  CAS  Google Scholar 

  74. 74.

    R. Hott, R. Kleiner, T. Wolf, and G. Zwicknagl: Superconducting materials—A topical overview. In Frontiers in Superconducting Materials, A.V. Narlikar, ed. (Springer, Berlin, Heidelberg, 2005); p. 1.

    Google Scholar 

  75. 75.

    C.W. Chu, P.C. Canfield, R.C. Dynes, Z. Fisk, B. Batlogg, G. Deutscher, T.H. Geballe, Z.X. Zhao, R.L. Greene, H. Hosono, and M.B. Maple: Epilogue: Superconducting materials past, present and future. Phys. C 514, 437 (2015).

    CAS  Article  Google Scholar 

  76. 76.

    P. Kozelj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jaglicic, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinsek: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).

    CAS  Article  Google Scholar 

  77. 77.

    J. Guo, H.H. Wang, F. von Rohr, Z. Wang, S. Cai, Y.Z. Zhou, K. Yang, A.G. Li, S. Jiang, Q. Wu, R.J. Cava, and L.L. Sun: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl. Acad. Sci. U. S. A. 114, 13144 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    S. Vrtnik, P. Kozelj, A. Meden, S. Maiti, W. Steurer, M. Feuerbacher, and J. Dolinsek: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys. J. Alloys Compd. 695, 3530 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    F. von Rohr, M.J. Winiarski, J. Tao, T. Klimczuk, and R.J. Cava: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor. Proc. Natl. Acad. Sci. U. S. A. 113, E7144 (2016).

    Article  CAS  Google Scholar 

  80. 80.

    F.O. von Rohr and R.J. Cava: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor. Phys. Rev. Mater. 2, 034801 (2018).

    Article  Google Scholar 

  81. 81.

    K. Stolze, J. Tao, F.O. von Rohr, T. Kong, and R.J. Cava: Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem. Mater. 30, 906 (2018).

    CAS  Article  Google Scholar 

  82. 82.

    B.T. Matthias: Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97, 74 (1955).

    CAS  Article  Google Scholar 

  83. 83.

    M.M. Collver and R.H. Hammond: Superconductivity in amorphous transition-metal alloy films. Phys. Rev. Lett. 30, 92 (1973).

    CAS  Article  Google Scholar 

  84. 84.

    X.D. Xiang, X.D. Sun, G. Briceno, Y.L. Lou, K.A. Wang, H.Y. Chang, W.G. Wallacefreedman, S.W. Chen, and P.G. Schultz: A combinatorial approach to materials discovery. Science 268, 1738 (1995).

    CAS  Article  Google Scholar 

  85. 85.

    M. Sahlberg, D. Karlsson, C. Zlotea, and U. Jansson: Superior hydrogen storage in high entropy alloys. Sci. Rep. 6, 36770 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    I. Kunce, M. Polanski, and J. Bystrzycki: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 39, 9904 (2014).

    CAS  Article  Google Scholar 

  87. 87.

    I. Kunce, M. Polanski, and J. Bystrzycki: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 38, 12180 (2013).

    CAS  Article  Google Scholar 

  88. 88.

    Y.F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin, J.W. Yeh, S.J. Lin, T.H. Liou, and C.W. Wang: Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int. J. Hydrogen Energy 35, 9046 (2010).

    CAS  Article  Google Scholar 

  89. 89.

    I. Kunce, M. Polanski, and T. Czujko: Microstructures and hydrogen storage properties of La–Ni–Fe–V–Mn alloys. Int. J. Hydrogen Energy 42, 27154 (2017).

    CAS  Article  Google Scholar 

  90. 90.

    H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, 2000).

    Google Scholar 

  91. 91.

    S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, and G.K. Dey: Development of vanadium based hydrogen storage material: A review. Renewable Sustainable Energy Rev. 72, 791 (2017).

    CAS  Article  Google Scholar 

  92. 92.

    S. Yang, F. Yang, C. Wu, Y. Chen, Y. Mao, and L. Luo: Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40− xZrx (0 ≤ x ≤ 2) alloys. J. Alloys Compd. 663, 460 (2016).

    CAS  Article  Google Scholar 

  93. 93.

    A. Kumar, S. Banerjee, C.G.S. Pillai, and S.R. Bharadwaj: Hydrogen storage properties of Ti2− xCrVMx (M = Fe, Co, Ni) alloys. Int. J. Hydrogen Energy 38, 13335 (2013).

    CAS  Article  Google Scholar 

  94. 94.

    H. Luo, Z.M. Li, and D. Raabe: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

    Article  Google Scholar 

  95. 95.

    Y. Zhao, D-H. Lee, J-A. Lee, W-J. Kim, H.N. Han, U. Ramamurty, J-Y. Suh, and J-i. Jang: Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy. Int. J. Hydrogen Energy 42, 12015 (2017).

    CAS  Article  Google Scholar 

  96. 96.

    Y. Zhao, D.H. Lee, M.Y. Seok, J.A. Lee, M.P. Phaniraj, J.Y. Suh, H.Y. Ha, J.Y. Kim, U. Ramamurty, and J.I. Jang: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Mater. 135, 54 (2017).

    CAS  Article  Google Scholar 

  97. 97.

    M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).

    Article  CAS  Google Scholar 

  98. 98.

    C. Yu, T-J. Zhu, R-Z. Shi, Y. Zhang, X-B. Zhao, and J. He: High-performance half-Heusler thermoelectric materials Hf1− xZrxNiSn1− ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757 (2009).

    CAS  Article  Google Scholar 

  99. 99.

    W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. Tritt: Recent advances in nanostructured thermoelectric half-heusler compounds. Nanomaterials 2, 379 (2012).

    CAS  Article  Google Scholar 

  100. 100.

    M. Yin and P. Nash: Standard enthalpies of formation of selected XYZ half-Heusler compounds. J. Chem. Thermodyn. 91, 1 (2015).

    Article  CAS  Google Scholar 

  101. 101.

    C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J-P. Maria: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    CAS  Article  Google Scholar 

  102. 102.

    S.C. Jiang, T. Hu, J. Gild, N.X. Zhou, J.Y. Nie, M.D. Qin, T. Harrington, K. Vecchio, and J. Luo: A new class of high-entropy perovskite oxides. Scripta Mater. 142, 116 (2018).

    CAS  Article  Google Scholar 

  103. 103.

    A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, and S.S. Bhattacharya: Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, C. Kubel, S.S. Bhattacharya, A.S. Gandhif, and H. Hahn: Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5, 102 (2017).

    CAS  Article  Google Scholar 

  105. 105.

    D. Berardan, A.K. Meena, S. Franger, C. Herrero, and N. Dragoe: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693 (2017).

    CAS  Article  Google Scholar 

  106. 106.

    D. Berardan, S. Franger, D. Dragoe, A.K. Meena, and N. Dragoe: Colossal dielectric constant in high entropy oxides. Phys. Status Solidi Rapid Res. Lett. 10, 328 (2016).

    CAS  Article  Google Scholar 

  107. 107.

    G. Anand, A.P. Wynn, C.M. Handley, and C.L. Freeman: Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119 (2018).

    CAS  Article  Google Scholar 

  108. 108.

    J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, and J. Luo: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).

    CAS  Article  Google Scholar 

  109. 109.

    K.H. Cheng, C.H. Lai, S.J. Lin, and J.W. Yeh: Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. Ann. Chimie Sci. Matériaux 31, 723 (2006).

    CAS  Article  Google Scholar 

  110. 110.

    C.H. Lai, S.J. Lin, J.W. Yeh, and A. Davison: Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. J. Phys. D: Appl. Phys. 39, 4628 (2006).

    CAS  Article  Google Scholar 

  111. 111.

    C.H. Lai, K.H. Cheng, S.J. Lin, and J.W. Yeh: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coating. Technol. 202, 3732 (2008).

    CAS  Article  Google Scholar 

  112. 112.

    M.H. Tsai, C.H. Lai, J.W. Yeh, and J.Y. Gan: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings. J. Phys. D: Appl. Phys. 41, 235402 (2008).

    Article  CAS  Google Scholar 

  113. 113.

    M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan: Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl. Phys. Lett. 92, 052109 (2008).

    Article  CAS  Google Scholar 

  114. 114.

    P.K. Huang and J.W. Yeh: Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings. Thin Solid Films 518, 180 (2009).

    CAS  Article  Google Scholar 

  115. 115.

    P.K. Huang and J.W. Yeh: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coating. Technol. 203, 1891 (2009).

    CAS  Article  Google Scholar 

  116. 116.

    P.K. Huang and J.W. Yeh: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scripta Mater. 62, 105 (2010).

    CAS  Article  Google Scholar 

  117. 117.

    A. Takeuchi, K. Amiya, T. Wada, and K. Yubuta: Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry. Intermetallics 66, 56 (2015).

    CAS  Article  Google Scholar 

  118. 118.

    A. Takeuchi, T. Wada, and Y. Zhang: MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L10 structure in Pettifor map for binary compounds. Intermetallics 82, 107 (2017).

    CAS  Article  Google Scholar 

  119. 119.

    F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).

    CAS  Article  Google Scholar 

  120. 120.

    R. Feng, P.K. Liaw, M.C. Gao, and M. Widom: First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).

    Article  CAS  Google Scholar 

  121. 121.

    M.C. Gao, P. Gao, J.A. Hawk, L.Z. Ouyang, D.E. Alman, and M. Widom: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).

    CAS  Article  Google Scholar 

  122. 122.

    F.Y. Tian, Y. Wang, D.L. Irving, and L. Vitos: Applications of coherent potential approximation to HEAs. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 299.

    Google Scholar 

  123. 123.

    M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk: High-entropy alloys in hexagonal close packed structure. Metall. Mater. Trans. A 47, 3322 (2016).

    CAS  Article  Google Scholar 

  124. 124.

    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Article  CAS  Google Scholar 

  125. 125.

    W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, and B.J. Lee: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study. npj Comput. Mater. 4, 1 (2018).

    CAS  Article  Google Scholar 

  126. 126.

    M. Widom, W.P. Huhn, S. Maiti, and W. Steurer: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).

    CAS  Article  Google Scholar 

  127. 127.

    W.P. Huhn and M. Widom: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).

    CAS  Article  Google Scholar 

  128. 128.

    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    CAS  Article  Google Scholar 

  129. 129.

    C. Zhang and M.C. Gao: CALPHAD modeling of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 399.

    Google Scholar 

  130. 130.

    M.C. Gao and D.E. Alman: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed in support of the US Department of Energy’s Fossil Energy Crosscutting Technology Research Program. The research was executed through the NETL Research and Innovation Center’s Advanced Alloy Development Field Work Proposal. Research performed by AECOM Staff was conducted under the RES contract DE-FE0004000. X.H.Y. and Y.Z. appreciate financial support from the National Science Foundation of China (No. 51471025) and 111 Project (B07003). D.B.M. acknowledges support from the Air Force Research Laboratory, Materials and Manufacturing Directorate. M.C.G. thanks Zhao Fan, Sheng Guo, Xun Shi, Tingting Zuo, Shengguo Ma, Hui Xu, Karoline Stolze, and Ke Jin for sharing the original data of their publications.

DISCLAIMER: This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael C. Gao.

Additional information

These authors were editors of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, M.C., Miracle, D.B., Maurice, D. et al. High-entropy functional materials. Journal of Materials Research 33, 3138–3155 (2018). https://doi.org/10.1557/jmr.2018.323

Download citation