Skip to main content
Log in

Anisotropic valence band dispersion of single crystal pentacene as measured by angle-resolved ultraviolet photoelectron spectroscopy

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electronic structures of single crystal pentacene are of great interest for the elucidation of charge carrier transport in organic semiconductor materials. Experimental observation of valence band dispersion was recently achieved on single crystal samples of pentacene; however, its intrinsic properties are still unresolved because past experiments were performed on specimens with surface oxides formed by exposure to the ambient atmosphere. In this work, X-ray photoelectron spectroscopy (XPS) and angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) were conducted on single-crystal pentacene samples prepared without ambient exposure. The XPS results confirmed the reduction of the abundance of oxide impurities on the present samples. The ARUPS measurements clearly resolved the valence band structures of the single-crystal pentacene in four symmetry directions of the surface Brillouin zone, indicating anisotropy of at least a factor of 2.4 for the intermolecular transfer integral and hole effective mass at the valence band maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Y-Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson: Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18, 606 (1997).

    Article  CAS  Google Scholar 

  2. O.D. Jurchescu, J. Baas, and T.T.M. Palstra: Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061 (2004).

    Article  CAS  Google Scholar 

  3. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, and J.L. Brédas: Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J. Chem. Phys. 118, 3764 (2003).

    Article  CAS  Google Scholar 

  4. G.A. de Wijs, C.C. Mattheus, R.A. de Groot, and T.T.M. Palstra: Anisotropy of the mobility of pentacene from frustration. Synth. Met. 139, 109 (2003).

    Article  CAS  Google Scholar 

  5. K. Doi, K. Yoshida, H. Nakano, A. Tachibana, T. Tanabe, Y. Kojima, and K. Okazaki: Ab initio calculation of electron effective masses in solid pentacene. J. Appl. Phys. 98, 113709 (2005).

    Article  CAS  Google Scholar 

  6. K. Hummer and C. Ambrosch-Draxl: Electronic properties of oligoacenes from first principles. Phys. Rev. B 72, 205205 (2005).

    Article  CAS  Google Scholar 

  7. H. Yoshida and N. Sato: Crystallographic and electronic structures of three different polymorphs of pentacene. Phys. Rev. B 77, 235205 (2008).

    Article  CAS  Google Scholar 

  8. N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, and J. Rabe: Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96, 156803 (2006).

    Article  CAS  Google Scholar 

  9. H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, and K. Sakamoto: Electronic structures of the highest occupied molecular orbital bands of a pentacene ultrathin film. Phys. Rev. Lett. 98, 247601 (2007).

    Article  CAS  Google Scholar 

  10. H. Yamane, D. Yoshimura, E. Kawabe, R. Sumii, K. Kanai, Y. Ouchi, N. Ueno, and K. Seki: Electronic structure at highly ordered organic/metal interfaces: Pentacene on Cu(110). Phys. Rev. B 76, 165436 (2007).

    Article  CAS  Google Scholar 

  11. M. Ohtomo, T. Suzuki, T. Shimada, and T. Hasegawa: Band dispersion of quasi-single crystal thin film phase pentacene monolayer studied by angle-resolved photoelectron spectroscopy. Appl. Phys. Lett. 95, 123308 (2009).

    Article  CAS  Google Scholar 

  12. R. Hatch, D. Huber, and H. Höchst: HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Phys. Rev. B 80, 081411(R) (2009).

    Article  CAS  Google Scholar 

  13. Y. Nakayama, Y. Mizuno, M. Hikasa, M. Yamamoto, M. Matsunami, S. Ideta, K. Tanaka, H. Ishii, and N. Ueno: Single-crystal pentacene valence-band dispersion and its temperature dependence. J. Phys. Chem. Lett. 8, 1259 (2017).

    Article  CAS  Google Scholar 

  14. J.Y. Lee, S. Roth, and Y.W. Park: Anisotropic field effect mobility in single crystal pentacene. Appl. Phys. Lett. 88, 252106 (2006).

    Article  CAS  Google Scholar 

  15. Y. Nakayama, Y. Uragami, M. Yamamoto, K. Yonezawa, K. Mase, S. Kera, H. Ishii, and N. Ueno: High-resolution core-level photoemission measurements on the pentacene single crystal surface assisted by photoconduction. J. Phys.: Condens. Matter 28, 094001 (2016).

    Google Scholar 

  16. Y. Mizuno, M. Yamamoto, H. Kinjo, K. Mase, H. Ishii, K.K. Okudaira, H. Yoshida, and Y. Nakayama: Effects of the ambient exposure on the electronic states of the clean surface of the pentacene single crystal. Mol. Cryst. Liq. Cryst. 648, 216 (2017).

    Article  CAS  Google Scholar 

  17. A. Toyoshima, T. Kikuchi, H. Tanaka, K. Mase, K. Amemiya, and K. Ozawa: Performance of PF BL-13A, a vacuum ultraviolet and soft X-ray undulator beamline for studying organic thin films adsorbed on surfaces. J. Phys.: Conf. Ser. 425, 152019 (2013).

    Google Scholar 

  18. M.P. Seah, I.S. Gilmore, and G. Beamson: XPS: Binding energy calibration of electron spectrometers 5—Re-evaluation of the reference energies. Surf. Interface Anal. 26, 642 (1998).

    Article  CAS  Google Scholar 

  19. Y. Ozawa, Y. Nakayama, S. Machida, H. Kinjo, and H. Ishii: Maximum probing depth of low-energy photoelectrons in an amorphous organic semiconductor film. J. Electron Spectrosc. Relat. Phenom. 197, 17 (2014).

    Article  CAS  Google Scholar 

  20. S. Jo and M. Takenaga: Morphologies of pentacene crystals obtained by physical vapor growth technique. Jpn. J. Appl. Phys. 49, 078002 (2010).

    Article  CAS  Google Scholar 

  21. C.C. Mattheus, A.B. Dros, J. Baas, A. Meetsma, J.L. de Boer, and T.T. Palstra: Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939 (2001).

    Article  CAS  Google Scholar 

  22. Q. Xin, S. Duhm, F. Bussolotti, K. Akaike, Y. Kubozono, H. Aoki, T. Kosugi, S. Kera, and N. Ueno: Accessing surface brillouin zone and band structure of picene single crystals. Phys. Rev. Lett. 108, 226401 (2012).

    Article  CAS  Google Scholar 

  23. S. Machida, Y. Nakayama, S. Duhm, Q. Xin, A. Funakoshi, N. Ogawa, S. Kera, N. Ueno, and H. Ishii: Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Phys. Rev. Lett. 104, 156401 (2010).

    Article  CAS  Google Scholar 

  24. Y. Nakayama, Y. Uragami, M. Yamamoto, S. Machida, H. Kinjo, K. Mase, K.R. Koswattage, and H. Ishii: Determination of the highest occupied molecular orbital energy of pentacene single crystals by ultraviolet photoelectron and photoelectron yield spectroscopies. Jpn. J. Appl. Phys. 53, 01AD03 (2014).

    Article  CAS  Google Scholar 

  25. M.P. Seah and W.A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979).

    Article  CAS  Google Scholar 

  26. S. Tanuma, C.J. Powell, and D.R. Penn: Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165 (1994).

    Article  CAS  Google Scholar 

  27. J. Yeh and I. Lindau: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1 (1985).

    Article  CAS  Google Scholar 

  28. S. Yamanaka, K. Hayakawa, L. Cojocaru, R. Tsuruta, T. Sato, K. Mase, S. Uchida, and Y. Nakayama: Electronic structures and chemical states of methylammonium lead triiodide thin films and the impact of annealing and moisture exposure. J. Appl. Phys. 123, 165501 (2018).

    Article  CAS  Google Scholar 

  29. R.C. Haddon, X. Chi, M.E. Itkis, J.E. Anthony, D.L. Eaton, T. Siegrist, C.C. Mattheus, and T.T.M. Palstra: Band electronic structure of one- and two-dimensional pentacene molecular crystals. J. Phys. Chem. B 106, 8288 (2002).

    Article  CAS  Google Scholar 

  30. S. Kera, H. Yamane, and N. Ueno: First-principles measurements of charge mobility in organic semiconductors: Valence hole–vibration coupling in organic ultrathin films. Prog. Surf. Sci. 84, 135 (2009).

    Article  CAS  Google Scholar 

  31. H. Fröhlich and G. Sewell: Electric conduction in semiconductors. Proc. Phys. Soc. 2, 643 (1959).

    Article  Google Scholar 

  32. H. Ishii, N. Kobayashi, and K. Hirose: Strong anisotropy of momentum-relaxation time induced by intermolecular vibrations of single-crystal organic semiconductors. Phys. Rev. B 88, 205208 (2013).

    Article  CAS  Google Scholar 

  33. T.P. Nguyen, J.H. Shim, and J.Y. Lee: Density functional theory studies of hole mobility in picene and pentacene crystals. J. Phys. Chem. C 119, 11301 (2015).

    Article  CAS  Google Scholar 

  34. S. Canola, C. Pecoraro, and F. Negri: Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs. Chem. Phys. 478, 130 (2016).

    Article  CAS  Google Scholar 

  35. T. Uemura, M. Yamagishi, J. Soeda, Y. Takatsuki, Y. Okada, Y. Nakazawa, and J. Takeya: Temperature dependence of the Hall effect in pentacene field-effect transistors: Possibility of charge decoherence induced by molecular fluctuations. Phys. Rev. B 85, 035313 (2012).

    Article  CAS  Google Scholar 

  36. H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K.K. Okudaira, and N. Ueno: Hole-vibration coupling of the highest occupied state in pentacene thin films. Phys. Rev. B 72, 153412 (2005).

    Article  CAS  Google Scholar 

  37. S. Kera, S. Hosoumi, K. Sato, H. Fukagawa, S.I. Nagamatsu, Y. Sakamoto, T. Suzuki, H. Huang, W. Chen, A.T.S. Wee, V. Coropceanu, and N. Ueno: Experimental reorganization energies of pentacene and perfluoropentacene: Effects of perfluorination. J. Phys. Chem. C 117, 22428 (2013).

    Article  CAS  Google Scholar 

  38. V.Y. Butko, X. Chi, D.V. Lang, and A.P. Ramirez: Field-effect transistor on pentacene single crystal. Appl. Phys. Lett. 83, 4773 (2003).

    Article  CAS  Google Scholar 

  39. J. Takeya, T. Nishikawa, T. Takenobu, S. Kobayashi, Y. Iwasa, T. Mitani, C. Goldmann, C. Krellner, and B. Batlogg: Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors. Appl. Phys. Lett. 85, 5078 (2004).

    Article  CAS  Google Scholar 

  40. T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani, and Y. Iwasa: Effect of postannealing on the performance of pentacene single-crystal ambipolar transistors. Appl. Phys. Lett. 93, 073301 (2008).

    Article  CAS  Google Scholar 

  41. Y. Kimura, M. Niwano, N. Ikuma, K. Goushi, and K. Itaya: Organic field effect transistor using pentacene single crystals grown by a liquid-phase crystallization process. Langmuir 25, 4861 (2009).

    Article  CAS  Google Scholar 

  42. Y. Takeyama, S. Ono, and Y. Matsumoto: Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition. Appl. Phys. Lett. 101, 083303 (2012).

    Article  CAS  Google Scholar 

  43. S.A. Arabi, J. Dong, M. Mirza, P. Yu, L. Wang, J. He, and C. Jiang: Nanoseed assisted PVT growth of ultrathin 2D pentacene molecular crystal directly onto SiO2 substrate. Cryst. Growth Des. 16, 2624 (2016).

    Article  CAS  Google Scholar 

  44. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J.A. Rogers, and M.E. Gershenson: Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  45. V. Podzorov, E. Menard, J. Rogers, and M. Gershenson: Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    Article  CAS  Google Scholar 

  46. J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa: In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (2007).

    Article  CAS  Google Scholar 

  47. Z.Q. Li, V. Podzorov, N. Sai, M.C. Martin, M.E. Gershenson, M. Di Ventra, and D.N. Basov: Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors. Phys. Rev. Lett. 99, 016403 (2007).

    Article  CAS  Google Scholar 

  48. Y. Nakayama, Y. Uragami, S. Machida, K.R. Koswattage, D. Yoshimura, H. Setoyama, T. Okajima, K. Mase, and H. Ishii: Full picture of the valence band structure of rubrene single crystals probed by angle-resolved and excitation energy dependent photoelectron spectroscopy. Appl. Phys. Express 5, 111601 (2012).

    Article  CAS  Google Scholar 

  49. A. Vollmer, R. Ovsyannikov, M. Gorgoi, S. Krause, M. Oehzelt, A. Lindblad, N. Mårtensson, S. Svensson, P. Karlsson, M. Lundvuist, T. Schmeiler, J. Pflaum, and N. Koch: Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. J. Electron Spectrosc. Relat. Phenom. 185, 55 (2012).

    Article  CAS  Google Scholar 

  50. F. Bussolotti, J. Yang, T. Yamaguchi, K. Yonezawa, K. Sato, M. Matsunami, K. Tanaka, Y. Nakayama, H. Ishii, N. Ueno, and S. Kera: Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nat. Commun. 8, 173 (2017).

    Article  CAS  Google Scholar 

  51. S. Fratini, D. Mayou, and S. Ciuchi: The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Joint Research by IMS [Proposal Nos. 28-620 and 29-604] and was conducted under approval of PF Program Advisory Committee [Proposal No. 2015G141]. Financial supports from JSPS-KAKENHI Grant Nos. JP15H05498, JP16K14102, and 26248062, The Precise Measurement Technology Promotion Foundation, Iketani Science and Technology Foundation, and Futaba Electronics Memorial Foundation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Nakayama.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y., Hikasa, M., Moriya, N. et al. Anisotropic valence band dispersion of single crystal pentacene as measured by angle-resolved ultraviolet photoelectron spectroscopy. Journal of Materials Research 33, 3362–3370 (2018). https://doi.org/10.1557/jmr.2018.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.315

Navigation