Skip to main content
Log in

Study of the impregnation of NiMo assisted by chelating agents for hydrodesulfurization-supported catalysts over mesoporous silica

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molybdenum sulfide hydrotreating catalysts promoted with nickel over tridimensional mesoporous silica (KIT-6 post synthesis modified with alumina) were prepared with three different chelating agents. Citric acid and EDTA (ethylenediaminetetraacetic acid) were used as typical chelates and the new suggestion, polyacrylic acid as a polymeric agent. The catalysts were synthesized by the incipient wetness impregnation method, and two different activation methods were applied to determine the correlation between the chelating agent and activation conditions. The beneficial use of chelating agents was evaluated in their performance on HDS (hydrodesulfurization) of DBT (dibenzothiophene). To determine the properties of catalysts, nitrogen physisorption, X-ray diffraction, HRTEM (high-resolution transmission electron microscopy), and TGA (thermogravimetric analysis) were used. The beneficial effect of chelating Ni during impregnation to avoid NiSx formation and thus promoting NiMoS arrangement was clearly observed in the catalytic HDS performance, and the TGA analysis of Ni-chelate complexes also confirms this theory. The catalyst with the best performance in the HDS reaction of DBT was the synthesized with citric acid and a slow rate temperature sulfidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C. Song: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211 (2003).

    Article  CAS  Google Scholar 

  2. R.R. Chianelli, G. Berhault, and B. Torres: Unsupported transition metal sulfide catalysts: 100 years of science and application. Catal. Today 147, 275 (2009).

    Article  CAS  Google Scholar 

  3. J.A. Mendoza-Nieto, F. Robles-Méndez, and T.E. Klimova: Support effect on the catalytic performance of trimetallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catal. Today 250, 47 (2014).

    Article  Google Scholar 

  4. A. Vandillen, R. Terorde, D. Lensveld, J. Geus, and K. Debjong: Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257 (2003).

    Article  CAS  Google Scholar 

  5. P. Munnik, P.E. de Jongh, and K.P. de Jong: Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687 (2015).

    Article  CAS  Google Scholar 

  6. T. Shimizu, K. Hiroshima, T. Honma, T. Mochizuki, and M. Yamada: Highly active hydrotreatment catalysts prepared with chelating agents. Catal. Today 45, 271 (1998).

    Article  CAS  Google Scholar 

  7. L. Coulier: Hydrotreating Model Catalysts: From Characterization to Kinetics (University Press Facilities, Eindhoven University of Technology, 2001).

    Google Scholar 

  8. B. Vogelaar: Deactivation of Hydroprocessing Catalysts (Ponsen & Looijen B.V., Wageningen, 1999).

    Google Scholar 

  9. E. Repo, J.K. Warchoł, A. Bhatnagar, A. Mudhoo, and M. Sillanpää: Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res. 47, 4812 (2013).

    Article  CAS  Google Scholar 

  10. M.A. Lélias, J. van Gestel, F. Maugé, and J.A.R. van Veen: Effect of NTA addition on the formation, structure and activity of the active phase of cobalt–molybdenum sulfide hydrotreating catalysts. Catal. Today 130, 109 (2008).

    Article  Google Scholar 

  11. T. Mochizuki, T. Hara, N. Koizumi, and M. Yamada: Surface structure and Fischer–Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents. Appl. Catal., A 317, 97 (2007).

    Article  CAS  Google Scholar 

  12. H. Li, M. Li, Y. Chu, F. Liu, and H. Nie: Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Appl. Catal., A 403, 75 (2011).

    Article  CAS  Google Scholar 

  13. M. Rana, J. Ramirez, A. Gutierrezalejandre, J. Ancheyta, L. Cedeno, and S. Maity: Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent. J. Catal. 246, 100 (2007).

    Article  CAS  Google Scholar 

  14. H. Wu, A. Duan, Z. Zhao, D. Qi, J. Li, B. Liu, G. Jiang, J. Liu, Y. Wei, and X. Zhang: Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent. Fuel 130, 203 (2014).

    Article  CAS  Google Scholar 

  15. P. Mazoyer, C. Geantet, F. Diehl, S. Loridant, and M. Lacroix: Role of chelating agent on the oxidic state of hydrotreating catalysts. Catal. Today 130, 75 (2008).

    Article  CAS  Google Scholar 

  16. K. Al-Dalama and A. Stanislaus: Temperature programmed reduction of SiO2–Al2O3 supported Ni, Mo, and NiMo catalysts prepared with EDTA. Thermochim. Acta 520, 67 (2011).

    Article  CAS  Google Scholar 

  17. C. Eduardo, S. Vargas, and R. Heredia: Modificación Superficial Mediante La Adición de Ácido Cítrico En Catalizadores NiWS Soportados En Alúmina-Titania (AT2) Para La Hidrodesulfuración de 4, 6 Dimetil Dibenzotiofeno (Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, 2012).

    Google Scholar 

  18. M.Á. Calderón-Magdaleno, J.A. Mendoza-Nieto, and T.E. Klimova: Effect of the amount of citric acid used in the preparation of NiMo/SBA-15 catalysts on their performance in HDS of dibenzothiophene-type compounds. Catal. Today 220–222, 78 (2014).

    Article  Google Scholar 

  19. T. Kubota, N. Rinaldi, K. Okumura, T. Honma, S. Hirayama, and Y. Okamoto: In situ XAFS study of the sulfidation of Co–Mo/B2O3/Al2O3 hydrodesulfurization catalysts prepared by using citric acid as a chelating agent. Appl. Catal., A 373, 214 (2010).

    Article  CAS  Google Scholar 

  20. Y. Fan, H. Xiao, G. Shi, H. Liu, Y. Qian, T. Wang, G. Gong, and X. Bao: Citric acid-assisted hydrothermal method for preparing NiW/USY–Al2O3 ultradeep hydrodesulfurization catalysts. J. Catal. 279, 27 (2011).

    Article  CAS  Google Scholar 

  21. T. Fujikawa, H. Kimura, K. Kiriyama, and K. Hagiwara: Development of ultra-deep HDS catalyst for production of clean diesel fuels. Catal. Today 111, 188 (2006).

    Article  CAS  Google Scholar 

  22. J. Escobar, M.C. Barrera, J.A. de los Reyes, J.A. Toledo, V. Santes, and J.A. Colín: Effect of chelating ligands on Ni–Mo impregnation over wide-pore ZrO2–TiO2. J. Mol. Catal. A: Chem. 287, 33 (2008).

    Article  CAS  Google Scholar 

  23. R. Roma-Luciow, L. Sarraf, and M. Morcellet: Complexes of poly(acrylic acid) with some divalent, trivalent and tetravalent metal ions. Eur. Polym. J. 37, 1741 (2001).

    Article  CAS  Google Scholar 

  24. K. Soni, B.S. Rana, A.K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, and G.M. Dhar: 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal., B 90, 55 (2009).

    Article  CAS  Google Scholar 

  25. S. Chaberek, Jr. and A.E. Martell: Stability of metal chelates. I. Iminodiacetic and iminodipropionic acids. J. Am. Chem. Soc. 74, 5052 (1952).

    Article  CAS  Google Scholar 

  26. L. Peña, D. Valencia, and T. Klimova: CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene. Appl. Catal., B 147, 879 (2014).

    Article  Google Scholar 

  27. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015).

    Article  CAS  Google Scholar 

  28. C. Jo, K. Kim, and R. Ryoo: Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater. 124, 45 (2009).

    Article  CAS  Google Scholar 

  29. J. Ramírez and F. Sánchez-Minero: Support effects in the hydrotreatment of model molecules. Catal. Today 130, 267 (2008).

    Article  Google Scholar 

  30. F. Trejo, M. Rana, and J. Ancheyta: CoMo/MgO–Al2O3 supported catalysts: An alternative approach to prepare HDS catalysts. Catal. Today 130, 327 (2008).

    Article  CAS  Google Scholar 

  31. S. Badoga, K.C. Mouli, K.K. Soni, A.K. Dalai, and J. Adjaye: Beneficial influence of EDTA on the structure and catalytic properties of sulfided NiMo/SBA-15 catalysts for hydrotreating of light gas oil. Appl. Catal., B 125, 67 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Mexican Council of Science and Technology (CONACYT) and to the Energy Department (SENER) for supporting this work through the projects CONACYT-SENER-Hidrocarburos No. 120135. In addition, the authors acknowledge the excellent work of Carlos Elias Ornelas Gutierrez from NanoTech CIMAV for technical support for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Álvarez-Contreras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, K.A., Álvarez-Contreras, L., De la Cruz, A. et al. Study of the impregnation of NiMo assisted by chelating agents for hydrodesulfurization-supported catalysts over mesoporous silica. Journal of Materials Research 33, 3604–3613 (2018). https://doi.org/10.1557/jmr.2018.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.314

Navigation