Skip to main content
Log in

Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts

  • End of Focus Section: Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study compared the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization. These scaffolds have been modified using methacrylate and laponite nanosilicates to improve their mechanical strength and support osteoblast function. Scaffold materials were prepared to have the same compressive strength (14–15 MPa) such that differences in cell response would be isolated to differences in biopolymer chemistry. The materials were tested for rheological properties to optimize the bio-ink for successful 3D printing using a robocast-assisted deposition system. Osteoblasts were cultured on the surface of 3D-printed methacrylated chitosan-laponite (MAC-Lp), methacrylated gelatin-laponite (MAG-Lp), MAC, and MAG scaffolds. MAC-Lp scaffolds showed increased cell viability, cell growth, and biomineral formation as compared to MAG-Lp scaffolds. FTIR results showed the presence of higher biomineral phosphate and extracellular matrix (ECM) collagen-like amide formation on MAC-Lp scaffolds as compared to MAG-Lp scaffolds. MAC-Lp scaffolds showed increased density of ECM-like tissue from SEM analysis, stained mineral nodules from Alizarin staining, and the existence of Ca–P species evident by X-ray absorbance near edge structure analysis. In conclusion, MAC-Lp scaffolds enhanced osteoblast growth and biomineral formation as compared to MAG-Lp scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. S. Saxena, A. Ray, A. Kapil, G. Pavon Djavid, D. Letourneur, B. Gupta, and A. Meddahi-Pellé: Development of a new polypropylene-based suture: Plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromolecular bioscience. 11, 373 (2011).

    Article  CAS  Google Scholar 

  2. E. Chiarello, M. Cadossi, G. Tedesco, P. Capra, C. Calamelli, A. Shehu, and S. Giannini: Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging: Clin. Exp. Res. 25, 101 (2013).

    Google Scholar 

  3. J.R. Grove: Autograft, allograft and xenograft options in the treatment of neglected Achilles tendon ruptures: a historical review with illustration of surgical repair. Surgeon. 15, 47 (2008).

    Google Scholar 

  4. N.A. Peppas and R. Langer: New challenges in biomaterials. Science 263, 1715 (1994).

    Article  CAS  Google Scholar 

  5. R. Censi, W. Schuurman, J. Malda, G. di Dato, P.E. Burgisser, W.J.A. Dhert, C.F. van Nostrum, P. di Martino, T. Vermonden, and W.E. Hennink: A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Adv. Funct. Mater. 21, 1833 (2011).

    Article  CAS  Google Scholar 

  6. S. Wangtueai and A. Noomhorm: Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT–Food Sci. Technol. 42, 825 (2009).

    Article  CAS  Google Scholar 

  7. K.D. Schwenke: The Science and Technology of Gelatin. Herausgegeben von A. G. Ward u. A. Courts, XVI und 564 Seiten mit zahlreichen Abb. u. Tab., Academic Press London, New York, San Francisco 1977. Preis: 18,00 £; 39,50 $. Food/Nahrung. 22, 444 (1978).

    Article  Google Scholar 

  8. P.H. Maurer: II. Antigenicity of gelatin in rabbits and other species. J. Exp. Med. 100, 515 (1954).

    Article  CAS  Google Scholar 

  9. J. Zhu and R. Marchant: Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8, 607 (2011).

    Article  CAS  Google Scholar 

  10. K. Haraguchi and H-J. Li: Mechanical properties and structure of polymer−clay nanocomposite gels with high clay content. Macromolecules 39, 1898 (2006).

    Article  CAS  Google Scholar 

  11. W.M. Tian, S.P. Hou, J. Ma, C.L. Zhang, Q.Y. Xu, I.S. Lee, H.D. Li, M. Spector, and F.Z. Cui: Hyaluronic acid–poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng. 11, 513 (2005).

    Article  CAS  Google Scholar 

  12. A.H. Clark, R.K. Richardson, S.B. Ross-Murphy, and J.M. Stubbs: Structural and mechanical properties of agar/gelatin co-gels. Small-deformation studies. Macromolecules 16, 1367 (1983).

    Article  CAS  Google Scholar 

  13. K. Yasuda, J. Ping Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno, and Y. Osada: Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26, 4468 (2005).

    Article  CAS  Google Scholar 

  14. P. Iyer, K. Walker, and S. Madihally: Increased matrix synthesis by fibroblasts with decreased proliferation on synthetic chitosan-gelatin porous structures. Biotechnol. Bioeng. 109, 1314 (2012).

    Article  CAS  Google Scholar 

  15. Y. Shigemasa, K. Saito, H. Sashiwa, and H. Saimoto: Enzymatic degradation of chitins and partially deacetylated chitins. Int. J. Biol. Macromol. 16, 43 (1994).

    Article  CAS  Google Scholar 

  16. E. Khor and L. Lim: Implantable applications of chitin and chitosan. Biomaterials 24, 2339 (2003).

    Article  CAS  Google Scholar 

  17. S.V. Madihally and H.W.T. Matthew: Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133 (1999).

    Article  CAS  Google Scholar 

  18. J.K. Suh and H.W. Matthew: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21, 2589 (2000).

    Article  CAS  Google Scholar 

  19. F-L. Mi, Y-C. Tan, H-F. Liang, and H-W. Sung: In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23, 181 (2002).

    Article  CAS  Google Scholar 

  20. S. Aiba, N. Minoura, K. Taguchi, and Y. Fujiwara: Covalent immobilization of chitosan derivatives onto polymeric film surfaces with the use of a photosensitive hetero-bifunctional crosslinking reagent. Biomaterials 8, 481 (1987).

    Article  CAS  Google Scholar 

  21. K. Cai, K. Yao, Y. Cui, S. Lin, Z. Yang, X. Li, H. Xie, T. Qing, and J. Luo: Surface modification of poly(D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro. J. Biomed. Mater. Res. 60, 398 (2002).

    Article  CAS  Google Scholar 

  22. A. Lahiji, A. Sohrabi, D.S. Hungerford, and C.G. Frondoza: Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res. 51, 586 (2000).

    Article  CAS  Google Scholar 

  23. P. Arpornmaeklong, P. Pripatnanont, and N. Suwatwirote: Properties of chitosan-collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells. Int. J. Oral Maxillofac. Surg. 37, 357 (2008).

    Article  CAS  Google Scholar 

  24. B. Li, Y. Wang, D. Jia, and Y. Zhou: Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly. J. Biomater. Sci., Polym. Ed. 22, 505 (2011).

    Article  CAS  Google Scholar 

  25. T. Jiang, W. Abdel Fattah, and C. Laurencin: In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27, 4894 (2006).

    Article  CAS  Google Scholar 

  26. I-Y. Kim, S-J. Seo, H-S. Moon, M-K. Yoo, I-Y. Park, B-C. Kim, and C-S. Cho: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26, 1 (2008).

    Article  CAS  Google Scholar 

  27. M.E. Harward: An introduction to clay colloid chemistry. For clay technologists, geologists, and soil scientists. H. van Olphen, ed. Interscience (Wiley), New York, 1963. xvi + 301 pp. Illus. $10. Science 143, 1023 (1964).

    Google Scholar 

  28. C-J. Wu, A.K. Gaharwar, P.J. Schexnailder, and G. Schmidt: Development of biomedical polymer-silicate nanocomposites: A materials science perspective. Materials 3, 2986 (2010).

    Article  CAS  Google Scholar 

  29. P. Bordes, E. Pollet, and L. Avérous: Nano-biocomposites: Biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34, 125 (2009).

    Article  CAS  Google Scholar 

  30. J. Xavier, T. Thakur, P. Desai, M. Jaiswal, N. Sears, E. Cosgriff Hernandez, R. Kaunas, and A. Gaharwar: Bioactive nanoengineered hydrogels for bone tissue engineering: A growth-factor-free approach. ACS Nano 9, 3109 (2015).

    Article  CAS  Google Scholar 

  31. A. Gaharwar, S. Mihaila, A. Swami, A. Patel, S. Sant, R. Reis, A. Marques, M. Gomes, and A. Khademhosseini: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 25, 3329 (2013).

    Article  CAS  Google Scholar 

  32. J. Cesarano, III, and P.D. Calvert: Freeforming objects with low-binder slurry. U.S. Patent 6,027, 326 (2000).

  33. J.A. Lewis, J.E. Smay, J. Stuecker, and J. Cesarano: Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89, 3599 (2006).

    Article  CAS  Google Scholar 

  34. J. Nichol, S. Koshy, H. Bae, C. Hwang, S. Yamanlar, and A. Khademhosseini: Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536 (2010).

    Article  CAS  Google Scholar 

  35. S. Lu, X. Song, D. Cao, Y. Chen, and K. Yao: Preparation of water-soluble chitosan. J. Appl. Polym. Sci. 91, 3497 (2004).

    Article  CAS  Google Scholar 

  36. V.G. Varanasi, E. Saiz, P.M. Loomer, B. Ancheta, N. Uritani, S.P. Ho, A.P. Tomsia, S.J. Marshall, and G.W. Marshall: Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system) ions. Acta Biomater. 5, 3536 (2009).

    Article  CAS  Google Scholar 

  37. H. Demirkiran, Y. Hu, L. Zuin, N. Appathurai, and P.B. Aswath: XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite–Bioglass®45S5 co-sintered bioceramics. Mater. Sci. Eng., C 31, 134 (2011).

    Article  CAS  Google Scholar 

  38. J. Rajendran, S. Gialanella, and P.B. Aswath: XANES analysis of dried and calcined bones. Mater. Sci. Eng., C 33, 3968 (2013).

    Article  CAS  Google Scholar 

  39. O.O. Aruwajoye, H.K. Kim, and P.B. Aswath: Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets. Calcif. Tissue Int. 96, 324 (2015).

    Article  CAS  Google Scholar 

  40. J. Kruse, P. Leinweber, K-U. Eckhardt, F. Godlinski, Y. Hu, and L. Zuin: Phosphorus L2, 3-edge XANES: Overview of reference compounds. J. Synchrotron Radiat. 16, 247 (2009).

    Article  CAS  Google Scholar 

  41. N. Mano, F. Mao, and A. Heller: Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588 (2003).

    Article  CAS  Google Scholar 

  42. F. Ravenelle, and M. Rahmouni: Contramid®: High-amylose starch for controlled drug delivery. Polysaccharides for drug delivery and pharmaceutical applications 934, 79–104 (2006).

    Article  CAS  Google Scholar 

  43. A. Darder, M. Baltodano, and R.D. Torres: Critical pedagogy: An introduction. In: The Critical Pedagogy Reader (Routledge, Abingdon, United Kingdom, 2003), pp. 1–21.

    Google Scholar 

  44. S.M. Saraiva, S.P. Miguel, M.P. Ribeiro, P. Coutinho, and I.J. Correia: Synthesis and characterization of a photocrosslinkable chitosan-gelatin hydrogel aimed for tissue regeneration. RSC Adv. 5, 63478 (2015).

    Article  CAS  Google Scholar 

  45. J. Han, T. Lei, and Q. Wu: High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: Dynamic rheological properties and hydrogel formation mechanism. Carbohydr. Polym. 102, 306 (2014).

    Article  CAS  Google Scholar 

  46. M. Shen, L. Li, Y. Sun, J. Xu, X. Guo, and R.K. Prud’homme: Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30, 1636 (2014).

    Article  CAS  Google Scholar 

  47. A. Gaharwar, V. Kishore, C. Rivera, W. Bullock, C-J. Wu, O. Akkus, and G. Schmidt: Physically crosslinked nanocomposites from silicate-crosslinked PEO: Mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromolecular bioscience. 12, 779 (2012).

    Article  CAS  Google Scholar 

  48. M. Peter, N. Ganesh, N. Selvamurugan, S.V. Nair, T. Furuike, H. Tamura, and R. Jayakumar: Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr. Polym. 80, 687 (2010).

    Article  CAS  Google Scholar 

  49. N. Pleshko, A. Boskey, and R. Mendelsohn: Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys. J. 60, 786 (1991).

    Article  CAS  Google Scholar 

  50. P-Y. Chen and J. McKittrick: Compressive mechanical properties of demineralized and deproteinized cancellous bone. J. Mech. Behav. Biomed. Mater. 4, 961 (2011).

    Article  CAS  Google Scholar 

  51. Z. Xiaoyu, B. Payal, O. Melissa, and L. Zanello: 1α,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival. J. Steroid Biochem. Mol. Biol. 103, 457 (2007).

    Article  CAS  Google Scholar 

  52. A. Gaharwar, P. Schexnailder, Q. Jin, C-J. Wu, and G. Schmidt: Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. ACS Appl. Mater. Interfaces 2, 3119 (2010).

    Article  CAS  Google Scholar 

  53. D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, J.J. Powell, and G.N. Hampson: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127 (2003).

    Article  CAS  Google Scholar 

  54. V. Varanasi, J. Owyoung, E. Saiz, S. Marshall, G. Marshall, and P. Loomer: The ionic products of bioactive glass particle dissolution enhance periodontal ligament fibroblast osteocalcin expression and enhance early mineralized tissue development. J. Biomed. Mater. Res., Part A 98, 177 (2011).

    Article  CAS  Google Scholar 

  55. A. Hoppe, N.S. Güldal, and A. Boccaccini: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757 (2011).

    Article  CAS  Google Scholar 

  56. F. Maehira, Y. Iinuma, Y. Eguchi, I. Miyagi, and S. Teruya: Effects of soluble silicon compound and deep-sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J. Bone Miner. Metab. 26, 446 (2008).

    Article  CAS  Google Scholar 

  57. A. Izu, T. Kumai, Y. Tohno, S. Tohno, T. Minami, G. Yamada, and M-O. Yamada: Silicon intake to vertebral columns of mice after dietary supply. Biol. Trace Elem. Res. 113, 297 (2006).

    Article  CAS  Google Scholar 

  58. H.S. Yang Huixia, W. Wenbo, and W. Aiqin: Composite hydrogel beads based on chitosan and laponite: Preparation, swelling, and drug release behaviour. Iran. Polym. J. 20, 479–490 (2011).

    Google Scholar 

  59. C.M. Murphy, M.G. Haugh, and F.J. O’Brien: The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461 (2010).

    Article  CAS  Google Scholar 

  60. I.S. Raja and N.N. Fathima: Porosity and dielectric properties as tools to predict drug release trends from hydrogels. SpringerPlus 3, 393 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Taha Azimaie for his important discussions on the use of the biopolymers studied in this work. The authors would also like to thank the personnel at the UTA CCMB and the TAMU-COD Microscopy and Histology Core for access and advice on the use of various equipment from which data were collected and presented in this manuscript. The authors would also like to thank Dr. Lucia Zuin, Dr. Tom Reiger, and Dr. Yongfeng Wu at the Canadian Light Source Synchrotron for their assistance with obtaining XANES data and analysis. Finally, we would also like to thank the National Institutes of Health for their kind support on this work (R03, Varanasi, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Varanasi.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebe, T., Ahuja, N., Monte, F. et al. Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts. Journal of Materials Research 35, 58–75 (2020). https://doi.org/10.1557/jmr.2018.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.260

Navigation