Skip to main content
Log in

Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solar steam generation is an efficient and green technology for desalination and drinking water purification, however, impeded by high cost, low efficiency, and complicated process. Black titania is expected to exhibit excellent solar steam performance due to its outstanding light absorption properties, chemical stability, low cost, and innocuity. Herein, we design a high absorbing and efficient solar steam generation system based on a black titania/graphene oxide nanocomposite film affixed to airlaid paper wrapped over the surface of expandable polyethylene foam; the system possesses several important criteria required for the ideal solar steam generator: wide-spectrum absorption, adequate water supply, reduced heat loss for localized water heating, and porous structure for steam flow. Remarkably, we realized a solar thermal conversion efficiency of 69.1% under illumination of 1 kW/m2 without solar concentration, and the device delivered remarkable cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
SCHEME 1
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.M. Mekonnen and A.Y. Hoekstra: Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  Google Scholar 

  2. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, and A.M. Mayes: Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  3. J.M. La Riviere: Threats to the world’s water. Sci. Am. 261, 80–94 (1989).

    Article  Google Scholar 

  4. M. Elimelech and W.A. Phillip: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  Google Scholar 

  5. G.W. Miller: Integrated concepts in water reuse: Managing global water needs. Desalination 187, 65–75 (2006).

    Article  CAS  Google Scholar 

  6. V.G. Gude, N. Nirmalakhandan, and S. Deng: Desalination using solar energy: Towards sustainability. Energy 36, 78–85 (2011).

    Article  CAS  Google Scholar 

  7. A. Lenert and E.N. Wang: Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 86, 253–265 (2012).

    Article  CAS  Google Scholar 

  8. M.M. Naim and M.A.A. El Kawi: Non-conventional solar stills Part 1. Non-conventional solar stills with charcoal particles as absorber medium. Desalination 153, 55–64 (2003).

    Article  CAS  Google Scholar 

  9. K.K. Murugavel and K. Srithar: Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy 36, 612–620 (2011).

    Article  CAS  Google Scholar 

  10. I. Al-Hayeka and O.O. Badran: The effect of using different designs of solar stills on water distillation. Desalination 169, 121–127 (2004).

    Article  CAS  Google Scholar 

  11. O. Ansari, M. Asbik, A. Bah, A. Arbaoui, and A. Khmou: Desalination of the brackish water using a passive solar still with a heat energy storage system. Desalination 324, 10–20 (2013).

    Article  CAS  Google Scholar 

  12. N.S. Lewis: Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

    Article  CAS  Google Scholar 

  13. G. Baffou and R. Quidant: Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013).

    Article  CAS  Google Scholar 

  14. H. Jin, G. Lin, L. Bai, A. Zeiny, and D. Wen: Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397–406 (2016).

    Article  CAS  Google Scholar 

  15. O. Neumann, C. Feronti, A.D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N.J. Halas: Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. 110, 11677–11681 (2013).

    Article  CAS  Google Scholar 

  16. O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, and N.J. Halas: Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2012).

    Article  CAS  Google Scholar 

  17. H. Zhang, H-J. Chen, X. Du, and D. Wen: Photothermal conversion characteristics of gold nanoparticle dispersions. Sol. Energy 100, 141–147 (2014).

    Article  CAS  Google Scholar 

  18. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu: Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Article  CAS  Google Scholar 

  19. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016).

    Article  CAS  Google Scholar 

  20. H. Wang, L. Miao, and S. Tanemura: Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Solar RRL 1, 1600023 (2017).

    Article  CAS  Google Scholar 

  21. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S.V. Boriskina, C-T. Lin, J. Wang, Y. Xu, M.M. Rahman, and T. Zhang: Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015).

    Article  CAS  Google Scholar 

  22. K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, and W.J. Padilla: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    Article  CAS  Google Scholar 

  23. L. Zhang, B. Tang, J. Wu, R. Li, and P. Wang: Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).

    Article  CAS  Google Scholar 

  24. X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, and J. Zhu: Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017).

    Article  CAS  Google Scholar 

  25. H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen: Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  CAS  Google Scholar 

  26. X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, and J. Zhu: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. 113, 13953–13958 (2016).

    Article  CAS  Google Scholar 

  27. N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu, and J. Zhu: Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).

    Article  CAS  Google Scholar 

  28. Y. Li, D. Lu, L. Zhou, M. Ye, X. Xiong, K. Yang, Y. Pan, M. Chen, P. Wu, T. Li, Y. Chen, Z. Wang, and Q. Xia: Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium. J. Mater. Res. 31, 3712–3722 (2016).

    Article  CAS  Google Scholar 

  29. Y. Liu, D. Su, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, and S. Zhang: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757–765 (2017).

    Article  CAS  Google Scholar 

  30. Z. Lyu, B. Liu, R. Wang, and L. Tian: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781–2789 (2017).

    Article  CAS  Google Scholar 

  31. T. Xia, W. Zhang, J.B. Murowchick, G. Liu, and X. Chen: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater. 3, 1516–1523 (2013).

    Article  CAS  Google Scholar 

  32. T. Xia, C. Zhang, N.A. Oyler, and X. Chen: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013).

    Article  CAS  Google Scholar 

  33. T. Xia, C. Zhang, N.A. Oyler, and X. Chen: Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198–2210 (2014).

    Article  CAS  Google Scholar 

  34. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049–2070 (2015).

    Article  CAS  Google Scholar 

  35. Y. Xu, Y. Mo, J. Tian, P. Wang, H. Yu, and J. Yu: The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl. Catal., B 181, 810–817 (2016).

    Article  CAS  Google Scholar 

  36. X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  CAS  Google Scholar 

  37. Y. Liu, K. Mu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, and S. Zhang: Facile synthesis of a narrow-gap titanium dioxide anatase/rutile nanofiber film on titanium foil with high photocatalytic activity under sunlight. Int. J. Hydrogen Energy 41, 10327–10334 (2016).

    Article  CAS  Google Scholar 

  38. X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang, and Y. Dai: Green synthetic approach for Ti3+ self-doped TiO2−x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5, 1870–1875 (2013).

    Article  CAS  Google Scholar 

  39. Y. Zhou, C. Chen, N. Wang, Y. Li, and H. Ding: Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. J. Phys. Chem. C 120, 6116–6124 (2016).

    Article  CAS  Google Scholar 

  40. X. Chen, L. Liu, Y.Y. Peter, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  Google Scholar 

  41. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890–9918 (2014).

    Article  CAS  Google Scholar 

  42. G. Zhu, J. Xu, W. Zhao, and F. Huang: Constructing black titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 8, 31716–31721 (2016).

    Article  CAS  Google Scholar 

  43. M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O’Brien, W. Sun, Y. Dong, and G.A. Ozin: Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2017).

    Article  CAS  Google Scholar 

  44. R. Ren, Z. Wen, S. Cui, Y. Hou, X. Guo, and J. Chen: Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci. Rep. 5, 10714 (2015).

    Article  CAS  Google Scholar 

  45. S.K. Gupta, R. Desai, P.K. Jha, S. Sahoo, and D. Kirin: Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc. 41, 350–355 (2009).

    Google Scholar 

  46. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, and M. Jiang: H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 5444–5450 (2013).

    Article  CAS  Google Scholar 

  47. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem. 161, 205–212 (2000).

    Article  CAS  Google Scholar 

  48. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, and Y. Li: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

    Article  CAS  Google Scholar 

  49. D. Chen, H. Feng, and J. Li: Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012).

    Article  CAS  Google Scholar 

  50. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  Google Scholar 

  51. X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, and J. Xie: Graphene in photocatalysis: A review. Small 12, 6640–6696 (2016).

    Article  CAS  Google Scholar 

  52. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53–107 (2018).

    Article  CAS  Google Scholar 

  53. L. Yin, M. Zhao, H. Hu, J. Ye, and D. Wang: Synthesis of graphene/tourmaline/TiO2 composites with enhanced activity for photocatalytic degradation of 2-propanol. Chin. J. Catal. 38, 1307–1314 (2017).

    Article  CAS  Google Scholar 

  54. D.W. Boukhvalov, M.I. Katsnelson, and Y-W. Son: Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

    Article  CAS  Google Scholar 

  55. L. Yan, Y-N. Chang, L. Zhao, Z. Gu, X. Liu, G. Tian, L. Zhou, W. Ren, S. Jin, and W. Yin: The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon 57, 120–129 (2013).

    Article  CAS  Google Scholar 

  56. Q. Hao, S. Hao, X. Niu, X. Li, D. Chen, and H. Ding: Enhanced photochemical oxidation ability of carbon nitride by π–π stacking interactions with graphene. Chin. J. Catal. 38, 278–286 (2017).

    Article  CAS  Google Scholar 

  57. Y. Yang, Z. Ma, L. Xu, H. Wang, and N. Fu: Preparation of reduced graphene oxide/meso-TiO2/Au NPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue. Appl. Surf. Sci. 369, 576–583 (2016).

    Article  CAS  Google Scholar 

  58. C. Lai, M-M. Wang, G-M. Zeng, Y-G. Liu, D-L. Huang, C. Zhang, R-Z. Wang, P. Xu, M. Cheng, C. Huang, H-P. Wu, and L. Qin: Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl. Surf. Sci. 390, 368–376 (2016).

    Article  CAS  Google Scholar 

  59. G. Wang, Y. Fu, X. Ma, W. Pi, D. Liu, and X. Wang: Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon 114, 117–124 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by National Key R&D Program of China (Grant: 2016YFA0200200) and National Natural Science Foundation of China (Grants 51272071, 51203045, and 21401049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbao Wang.

Supplementary Material

43578_2018_33060674_MOESM1_ESM.doc

Supporting Information: Black titania/GO nanocomposite films with excellent photothermal property for solar steam generation (approximately 92 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hou, B., Wang, G. et al. Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. Journal of Materials Research 33, 674–684 (2018). https://doi.org/10.1557/jmr.2018.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.25

Navigation