Skip to main content
Log in

Effects of pressure and aging treatment on microstructures and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2Zn–0.4Zr alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influences of pressure and aging treatment on microstructures and mechanical properties of rheo-squeeze casting (RSC) Mg–3Nd–0.2Zn–0.4Zr alloys were studied. It was found that the nucleation rate, solid solubility of Nd and Zn in the α-Mg matrix, and dislocation density were increased with increasing applied pressure. After aging treatment, the amount of the Zn2Zr3 phase was increased with increasing pressure; β″ phase and β′ precipitates were observed in the RSC alloy and finer β′ precipitates formed in the permanent mold casting (PMC) alloy. The mechanical properties of as-cast alloys were initially increased and then decreased with increasing pressure, while the properties of T6-treated alloys were increased continuously. Due to the larger grain boundary strengthening contribution, the T6-treated RSC sample showed higher mechanical properties than the PMC sample, and the yield strength, ultimate tensile strength, and elongation could reach 165 MPa, 309 MPa, and 5.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C. Antion, P. Donnadieu, F. Perrard, A. Deschampa, C. Tassin, and A. Pisch: Hardening precipitation in a Mg–4Y–3RE alloy. Acta Mater. 51, 5335 (2003).

    Article  CAS  Google Scholar 

  2. Y.L. Li, G.H. Wu, A.T. Chen, H.R.J. Nodooshan, W.C. Liu, Y.X. Wang, and W.J. Ding: Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J. Mater. Res. 30, 3461 (2015).

    Article  CAS  Google Scholar 

  3. P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai: Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt%) alloy. Mater. Sci. Eng., A 486, 183 (2008).

    Article  Google Scholar 

  4. Y.S. Chen, G.H. Wu, W.C. Liu, L. Zhang, H.H. Zhang, and W.D. Cui: Effects of minor Y addition on microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy. J. Mater. Res. 32, 3712 (2017).

    Article  CAS  Google Scholar 

  5. Y.S. Chen, G.H. Wu, W.C. Liu, L. Zhang, and Q. Wang: Effect of mold temperature on microstructure and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2 Zn–0.4 Zr alloy. J. Mater. Res. 32, 4206 (2017).

    Article  CAS  Google Scholar 

  6. P.H. Fu, L.M. Peng, H.Y. Jiang, L. Ma, and C.Q. Zhai: Chemical composition optimization of gravity cast Mg–y Nd–x Zn–Zr alloy. Mater. Sci. Eng., A 496, 177 (2008).

    Article  Google Scholar 

  7. A. Sanaty-Zadeh, A.A. Luo, and D.S. Stone: Comprehensive study of phase transformation in age-hardening of Mg–3Nd–0.2 Zn by means of scanning transmission electron microscopy. Acta Mater. 94, 294 (2015).

    Article  CAS  Google Scholar 

  8. H. Qin, Y.C. Zhao, Z.Q. An, M.Q. Cheng, Q. Wang, T. Cheng, Q.J. Wang, J.X. Wang, Y. Jiang, X.L. Zhang, and G.Y. Yuan: Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg–Nd–Zn–Zr alloy. Biomaterials 53, 211 (2015).

    Article  CAS  Google Scholar 

  9. Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, and H.Y. Jiang: Strengthening mechanisms in solution treated Mg–y Nd–z Zn–x Zr alloy. J. Mater. Sci. 48, 6367 (2013).

    Article  CAS  Google Scholar 

  10. M.C. Flemings: Behavior of metal alloys in the semisolid state. Metall. Trans. B 22, 269 (1991).

    Article  Google Scholar 

  11. R. Canyook, J. Wannasin, S. Wisuthmethangkul, and M.C. Flemings: Characterization of the microstructure evolution of a semi-solid metal slurry during the early stages. Acta Mater. 60, 3501 (2012).

    Article  CAS  Google Scholar 

  12. M. Xia, Y. Huang, Z. Cassinath, and Z. Fan: Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy. Metall. Mater. Trans. A 43, 4331 (2012).

    Article  CAS  Google Scholar 

  13. J. Wannasin, R. Canyook, S. Wisutmethangoon, and M.C. Flemings: Grain refinement behavior of an aluminum alloy by inoculation and dynamic nucleation. Acta Mater. 61, 3897 (2013).

    Article  CAS  Google Scholar 

  14. Y. Zhang, G.H. Wu, W.C. Liu, L. Zhang, S. Pang, and W.J. Ding: Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process. Mater. Des. 67, 1 (2015).

    Article  Google Scholar 

  15. J. Wan, H. Yan, and D. Xu: Rheological study of semi-solid TiAl3/ZL101 composites prepared by ultrasonic vibration. Int. J. Mater. Res. 106, 1244 (2015).

    Article  CAS  Google Scholar 

  16. S.L. Lu, S.S. Wu, L. Wan, and P. An: Microstructure and tensile properties of wrought Al alloy 5052 produced by rheo-squeeze casting. Metall. Mater. Trans. A 44, 2735 (2013).

    Article  Google Scholar 

  17. Y. Li, Y. Zhang, J. Bi, and Z. Luo: Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding. Mater. Des. 83, 577 (2015).

    Article  CAS  Google Scholar 

  18. C.L. Wang, A.T. Chen, L. Zhang, G.H. Wu, and W.J. Ding: Preparation of an Mg–Gd–Zn alloy semisolid slurry by low frequency electro-magnetic stirring. Mater. Des. 84, 53 (2015).

    Article  CAS  Google Scholar 

  19. Y.S. Chen, L. Zhang, W.C. Liu, G.H. Wu, and W.J. Ding: Preparation of Mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Mater. Des. 95, 398 (2016).

    Article  CAS  Google Scholar 

  20. X. Fang, S. Lü, L. Zhao, J. Wang, L.F. Liu, and S.S. Wu: Microstructure and mechanical properties of a novel Mg–RE–Zn–Y alloy fabricated by rheo-squeeze casting. Mater. Des. 94, 353 (2016).

    Article  CAS  Google Scholar 

  21. H.M. Guo, S.G. Zhang, X.J. Yang, X.B. Liu, and H.L. Jin: Microstructure evolution and mechanical properties of rheo-squeeze cast Mg–9Al–1Zn alloy by experiments and thermodynamic calculation. Metall. Mater. Trans. A 46, 2134 (2015).

    Article  CAS  Google Scholar 

  22. Y.S. Chen, T.J. Chen, S.Q. Zhang, and P.B. Li: Effects of processing parameters on microstructure and mechanical properties of powder-thixoforged 6061 aluminum alloy. Trans. Nonferrous Metals Soc. China 25, 699 (2015).

    Article  CAS  Google Scholar 

  23. P. Bindu and S. Thomas: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  24. K.J. Li, Q.A. Li, X.T. Jing, J. Chen, X.Y. Zhang, and Q. Zhang: Effects of Sm addition on microstructure and mechanical properties of Mg–6Al–0.6 Zn alloy. Scripta Mater. 60, 1101 (2009).

    Article  CAS  Google Scholar 

  25. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scripta Mater. 48, 997 (2003).

    Article  CAS  Google Scholar 

  26. S.J. Liu, G.Y. Yang, S.F. Luo, and W.Q. Jie: Microstructure evolution during heat treatment and mechanical properties of Mg–2.49Nd–1.82Gd–0.19Zn–0.4Zr cast alloy. Mater. Charact. 107, 334 (2015).

    Article  CAS  Google Scholar 

  27. H.Z. Li, F. Lv, X.P. Liang, Y.L. Qi, Z.X. Zhu, and K.L. Zhang: Effect of heat treatment on microstructures and mechanical properties of a cast Mg–Y–Nd–Zr alloy. Mater. Sci. Eng., A 667, 409 (2016).

    Article  CAS  Google Scholar 

  28. Y.L. Yang, L.M. Peng, P.H. Fu, B. Hu, and W.J. Ding: Study on microstructure of squeeze casting AZ91D alloy. Mater. Sci. Technol. 27, 189 (2014).

    Article  Google Scholar 

  29. M.X. Pan, Y.S. Yao, Y.X. Zhuang, and W.H. Wang: Pressure-controlled nucleation and growth in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass close to and beyond glass transition temperature. Phys. Lett. A 303, 229 (2002).

    Article  CAS  Google Scholar 

  30. O.J. Kleppa: Ultrasonic velocities of sound in some metallic liquids. Adiabatic and isothermal compressibilities of liquid metals at their melting points. J. Chem. Phys. 18, 1331 (1950).

    Article  CAS  Google Scholar 

  31. T. Yamane, N. Mori, Y. Minamino, Y. Miyamoto, M. Koizumi, and T. Takahashi: Effect of high pressure on interdiffusion in Cu–Zn alloys at temperatures near the melting point. Mater. Trans. A 19, 467 (1988).

    Article  Google Scholar 

  32. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book (Butterworth-Heinemann, Boston, 2003).

    Google Scholar 

  33. J. Hafner: Structure and thermodynamics of liquid metals and alloys. Phys. Rev. A 16, 351 (1977).

    Article  CAS  Google Scholar 

  34. M. Paliwal, S.K. Das, J. Kim, and I.H. Jung: Diffusion of Nd in hcp Mg and interdiffusion coefficients in Mg–Nd system. Scripta Mater. 108, 11 (2015).

    Article  CAS  Google Scholar 

  35. S.Q. Zhang, T.J. Chen, F.L. Cheng, and L.L. Li: Effects of mould temperature on microstructure and tensile properties of thixoforged Mg2Sip/AM60B in situ composites. J. Alloys Compd. 657, 582 (2016).

    Article  CAS  Google Scholar 

  36. T.J. Chen, L.K. Huang, X.F. Huang, Y. Ma, and Y. Hao: Effects of mould temperature and grain refiner amount on microstructure and tensile properties of thixoforged AZ63 magnesium alloy. J. Alloys Compd. 556, 167 (2013).

    Article  CAS  Google Scholar 

  37. C.P. Tang, W.H. Liu, Y.Q. Chen, X. Liu, and Y.L. Deng: Effects of thermal treatment on microstructure and mechanical properties of a Mg–Gd-based alloy plate. Mater. Sci. Eng., A 659, 63 (2016).

    Article  CAS  Google Scholar 

  38. J.E. Bailey and P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5, 485 (1960).

    Article  CAS  Google Scholar 

  39. C.H. Cáceres and P. Lukáč: Strain hardening behaviour and the Taylor factor of pure magnesium. Philos. Mag. 88, 977 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by National Key Research and Development Program of China (No. 2016YFB0701205) and Science Innovation Foundation of Shanghai Academy of Spaceflight Technology (Nos. SAST2015047 and SAST2016048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Wu or Wencai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, G., Liu, W. et al. Effects of pressure and aging treatment on microstructures and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2Zn–0.4Zr alloy. Journal of Materials Research 33, 758–771 (2018). https://doi.org/10.1557/jmr.2018.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.24

Navigation