Skip to main content
Log in

Synthesis and performance evaluation of binuclear metal phthalocyanines as high-efficiency electrocatalysts for Li/SOCl2 batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two series of binuclear metal phthalocyanine complexes M2(PcTN)2Nap and M2(PcTA)2Nap (M = Mn2+, Fe2+, Co2+, Cu2+) were designed and synthesized through the liquid solvent method and amination reaction. Elemental analysis, IR, and UV-vis spectroscopy were applied to characterize the compounds. To evaluate their catalytic performance, all the compounds were respectively added into the electrolyte of Li/SOCl2 battery systems as well as three-electrode systems for cyclic voltammetry (CV) measurements. The research studies indicate that the average discharge voltage and discharge time of the battery could be effectively enhanced by 0.2440 V and 810.7 s when compared with the battery in the absence of the compounds. As for capacities of the batteries containing catalysts, they were also found to have an improvement of 51.78–91.62%. Among the effects of diverse metal ions on the catalytic performance of phthalocyanines, the complexes whose center metal ions were Mn2+ or Co2+ exhibited relatively high catalytic performance. Meanwhile, combined with experimental results of CV analyses, the suggested catalytic mechanism of binuclear phthalocyanines for catalyzing Li/SOCl2 batteries had been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
SCHEME 2
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Y. Ko and C.T. Lee: Effects of the structural characteristics of carbon cathode on the initial voltage delay in Li/SOCl2 battery. J. Ind. Eng. Chem. 18, 72 (2012).

    Article  Google Scholar 

  2. H.V. Venkatasetty and D.J. Saathoff: Properties of LiAlCl4–SOCl2 solutions for Li/SOCl2 battery. J. Electrochem. Soc. 128, 773 (1981).

    Article  CAS  Google Scholar 

  3. R.L. Zhang, B. Xu, J.F. Wang, J.S. Zhao, and S.C. Zhang: Binuclear transition metal phthalocyanines with superior performance as electrocatalysts for lithium/thionyl chloride battery. J. Mater. Res. 29, 793 (2014).

    Article  CAS  Google Scholar 

  4. Z. Xu, G. Zhang, and Z. Cao: Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery. J. Mol. Catal. A: Chem. 318, 101 (2010).

    Article  CAS  Google Scholar 

  5. T. Xia, W. Zhang, Z. Wang, and X. Song: Amorphous carbon-coated TiO2, nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6, 109 (2014).

    Article  CAS  Google Scholar 

  6. J.Q. Liu, Q.C. Zhuang, and Y.L. Shi: Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries. RSC Adv. 6, 42885 (2016).

    Article  CAS  Google Scholar 

  7. K.R.V. Reddy, J. Keshavayya, and B.E.K. Swamy: Spectral and electrochemical investigation of octanitro substituted metal phthalocyanines. Dyes Pigm. 80, 1 (2009).

    Article  CAS  Google Scholar 

  8. J.P. Zhong, Y.J. Fan, and H. Wang: Copper phthalocyanine functionalization of graphene nanosheets as support for platinum nanoparticles and their enhanced performance toward methanol oxidation. J. Power Sources 242, 208 (2013).

    Article  CAS  Google Scholar 

  9. M. Jing, M. Zhou, and G. Li: Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl. Mater. Interfaces 9, 9662 (2017).

    Article  CAS  Google Scholar 

  10. J.Q. Wen, J. Xie, X.B. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    Article  CAS  Google Scholar 

  11. N.K. Shrestha, H. Kohn, and M. Imamura: Electrophoretic deposition of phthalocyanine in organic solutions containing trifluoroacetic acid. Langmuir 26, 17024 (2010).

    Article  CAS  Google Scholar 

  12. T. Stuchinskaya, M. Moreno, and M.J. Cook: Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochem. Photobiol. Sci. 10, 822 (2011).

    Article  CAS  Google Scholar 

  13. T.P. Mthethwa, S. Tuncel, and M. Durmuş: Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate. Dalton Trans. 42, 4922 (2013).

    Article  CAS  Google Scholar 

  14. A.B. Sorokin and E.V. Kudrik: Phthalocyanine metal complexes: Versatile catalysts for selective oxidation and bleaching. Catal. Today 159, 37 (2011).

    Article  CAS  Google Scholar 

  15. G. Bottari, O. Trukhina, and M. Ince: Towards artificial photosynthesis: Supramolecular, donor–acceptor, porphyrin- and phthalocyanine/carbon nanostructure ensembles. Coord. Chem. Rev. 256, 2453 (2012).

    Article  CAS  Google Scholar 

  16. S. Tuncel, E.N. Kaya, and M. Durmuş: Distribution of single-walled carbon nanotubes in pyrene containing liquid crystalline asymmetric zinc phthalocyanine matrix. Dalton Trans. 43, 4689 (2014).

    Article  CAS  Google Scholar 

  17. M. García-Iglesias, J.H. Yum, and R. Humphry-Baker: Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chem. Sci. 2, 1145 (2011).

    Article  Google Scholar 

  18. J.E. Royer, E.D. Kappe, and C. Zhang: Organic thin-film transistors for selective hydrogen peroxide and organic peroxide vapor detection. J. Phys. Chem. C 116, 24566 (2012).

    Article  CAS  Google Scholar 

  19. J. Pillay and S. Vilakazi: Nanostructured metallophthalocyanine complexes: Synthesis and electrocatalysis. J. Porphyrins Phthalocyanines 16, 785 (2012).

    Article  CAS  Google Scholar 

  20. Y. Lu, Y. Jiang, and W. Chen: Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 6, 3309 (2014).

    Article  CAS  Google Scholar 

  21. T. Ikeue, M. Sonoda, and S. Kurahashi: Annulated dinuclear palladium(II) phthalocyanine complex as an effective photo-oxidation catalyst for near-infrared region light. Inorg. Chem. Commun. 13, 1170 (2010).

    Article  CAS  Google Scholar 

  22. P. Bata, F. Notheisz, and P. Kluson: Iron phthalocyanine as new efficient catalyst for catalytic transfer hydrogenation of simple aldehydes and ketones. Appl. Organomet. Chem. 29, 45 (2015).

    Article  CAS  Google Scholar 

  23. R. Zhao, Y.J. Lei, Y.Q. Zhan, and F.B. Meng: Solid-state pyrolysis of iron phthalocyanine polymer into iron nanowire inside carbon nanotube and their novel electromagnetic properties. J. Mater. Res. 28, 2369 (2011).

    Article  Google Scholar 

  24. R. Zhao, H.L. Tang, H. Guo, and Y.J. Lei: A facile preparation of hyperbranched copper phthalocyanine microspheres and their wideband microwave absorption properties. J. Mater. Res. 28, 1609 (2013).

    Article  CAS  Google Scholar 

  25. B. Xu, R.L. Zhang, and J.F. Wang: Investigation of binuclear metal phthalocyanines as electrocatalysts for Li/SOCl2 battery. J. Solid State Electrochem. 17, 2391 (2013).

    Article  CAS  Google Scholar 

  26. R. Zhang, J. Wang, and B. Xu: Catalytic activity of binuclear transition metal phthalocyanines in electrolyte operation of lithium/thionyl chloride battery. J. Electrochem. Soc. 159, H704 (2012).

    Article  CAS  Google Scholar 

  27. R.Q. Wang, R.L. Zhang, B. Xu, and F. Yang: Highly improving the electrochemical performance of LiFePO4 modified by metal phthalocyanines as cathode materials. J. Mater. Res. 30, 645 (2015).

    Article  CAS  Google Scholar 

  28. H. Cheng, J.M. Chen, Q.J. Li, and C.Y. Su: Modified molecular framework derived highly efficient Mn–Co–carbon cathode for a flexible Zn-air battery. Chem. Commun. 53, 11596 (2017).

    Article  CAS  Google Scholar 

  29. C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, and N. Li: Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 7, 13 (2017).

    Google Scholar 

  30. G.K. Karaoğlan, G. Gümrükçü, and A. Koca: Synthesis and characterization of novel soluble phthalocyanines with fused conjugated unsaturated groups. Dyes Pigm. 90, 11 (2011).

    Article  Google Scholar 

  31. M. Arıcı, D. Arıcan, and A.L. Uğur: Electrochemical and spectroelectrochemical characterization of newly synthesized manganese, cobalt, iron and copper phthalocyanines. Electrochim. Acta 87, 554 (2013).

    Article  Google Scholar 

  32. S. Ray and S. Vasudevan: Encapsulation of cobalt phthalocyanine in zeolite-Y: Evidence for nonplanar geometry. Inorg. Chem. 42, 1711 (2003).

    Article  CAS  Google Scholar 

  33. T. Ceyhan, M. Yüksek, and H.G. Yağlıoğlu: Synthesis, characterization and nonlinear absorption of novel octakis-POSS substituted metallophthalocyanines and strong optical limiting property of CuPc. Dalton Trans. 18, 2407 (2008).

    Article  Google Scholar 

  34. P.W. Chen, K. Li, and Y.X. Yu: Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl. Surf. Sci. 392, 608 (2017).

    Article  CAS  Google Scholar 

  35. M. Mukherjee, U.K. Ghorai, and M. Samanta: Graphene wrapped copper phthalocyanine nanotube: Enhanced photocatalytic activity for industrial waste water treatment. Appl. Surf. Sci. 418, 156 (2017).

    Article  CAS  Google Scholar 

  36. B. Xiao, M. Zhu, and X. Li: A stable and efficient photocatalytic hydrogen evolution system based on covalently linked silicon-phthalocyanine-graphene with surfactant. Int. J. Hydrogen Energy 41, 11537 (2016).

    Article  CAS  Google Scholar 

  37. X. Li, R.C. Shen, S. Ma, X.B. Chen, and J. Xie: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).

    Article  CAS  Google Scholar 

  38. W.S. Kim and Y.K. Choi: Electrocatalytic effects of thionyl chloride reduction by polymeric Schiff base transition metal(II) complexes. Appl. Catal., A 252, 163 (2003).

    Article  CAS  Google Scholar 

  39. D. Chen, H. Feng, and J. Li: Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027 (2012).

    Article  CAS  Google Scholar 

  40. Z. Xu, J. Zhao, and H. Li: Influence of the electronic configuration of the central metal ions on catalytic activity of metal phthalocyanines to Li/SOCl2 battery. J. Power Sources 194, 1081 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the National Natural Science Foundation of China (No. 21401149) and the Key Laboratory Research and Establish Program of Shaanxi Education Section (No. 17JS130) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronglan Zhang or Jianshe Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhang, Y., Zhang, R. et al. Synthesis and performance evaluation of binuclear metal phthalocyanines as high-efficiency electrocatalysts for Li/SOCl2 batteries. Journal of Materials Research 33, 2376–2384 (2018). https://doi.org/10.1557/jmr.2018.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.238

Navigation