Skip to main content

Advertisement

Log in

3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the effects of 3D-printed SiO2 and ZnO-doped tricalcium phosphate (TCP) scaffolds with interconnected pores were evaluated on the in vivo bone formation and healing properties of a rabbit tibial defect model. Pure and doped TCP scaffolds were fabricated by a ceramic powder-based 3D printing technique and implanted into critical sized rabbit tibial defects for up to 4 months. In vivo bone regeneration was evaluated using chronological radiological examination, histological evaluations, SEM micrographs, and fluorochrome labeling studies. Radiograph results showed that Si/Zn-doped samples had slower degradation kinetics than the pure TCP samples. 3D printing of TCP scaffolds improved bone formation. The addition of dopants in the TCP scaffolds improved osteogenic capabilities when compared to the pure scaffolds. In summary, our findings indicate that the addition of dopants to the TCP scaffolds enhanced bone formation and in turn leading to accelerated healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Bandyopadhyay, S. Bernard, W. Xue, and S. Bose: Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants. J. Am. Ceram. Soc. 89, 2675–2688 (2006).

    Article  CAS  Google Scholar 

  2. S. Bose, S. Tarafder, S.S. Banerjee, N.M. Davies, and A. Bandyopadhyay: Understanding in vivo response and mechanical property variation in MgO, SrO, and SiO2 doped β-TCP. Bone 48, 1282–1290 (2011).

    Article  CAS  Google Scholar 

  3. Q. Liu, L. Cen, S. Yin, L. Chen, G. Liu, J. Chang, and L. Cui: A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 29, 4792–4799 (2008).

    Article  CAS  Google Scholar 

  4. Y. Huang, X. Jin, X. Zhang, H. Sun, J. Tu, T. Tang, J. Chang, and K. Dai: In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 30, 5041–5048 (2009).

    Article  CAS  Google Scholar 

  5. D.W. Hutmacher: Scaffolds in tissue engineering bone and cartilage. In The Biomaterials: Silver Jubilee Compendium (Elsevier, New York, New York, 2006); pp. 175–189. https://doi.org/10.1016/B978-008045154-1.50021-6.

    Chapter  Google Scholar 

  6. S. Tarafder, V.K. Balla, N.M. Davies, A. Bandyopadhyay, and S. Bose: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regener. Med. 7, 631–641 (2013).

    Article  CAS  Google Scholar 

  7. V. Karageorgiou and D. Kaplan: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474–5491 (2005).

    Article  CAS  Google Scholar 

  8. B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, and T. Nakamura: Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27, 5892–5900 (2006).

    Article  CAS  Google Scholar 

  9. M. Bohner, Y. Loosli, G. Baroud, and D. Lacroix: Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 7, 478–484 (2011).

    Article  CAS  Google Scholar 

  10. M. Bohner and F. Baumgart: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25, 3569–3582 (2004).

    Article  CAS  Google Scholar 

  11. S. Bose, J. Darsell, M. Kintner, H. Hosick, and A. Bandyopadhyay: Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater. Sci. Eng., C 23, 479–486 (2003).

    Article  Google Scholar 

  12. D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, J.J. Powell, and G.N. Hampson: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127–135 (2003).

    Article  CAS  Google Scholar 

  13. P.S. Gomes, C. Botelho, M.A. Lopes, J.D. Santos, and M.H. Fernandes: Effect of silicon-containing hydroxyapatite coatings on the human in vitro osteoblastic response. Bone 44, S267 (2009).

    Article  Google Scholar 

  14. G.A. Fielding, A. Bandyopadhyay, and S. Bose: Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28, 113–122 (2012).

    Article  CAS  Google Scholar 

  15. M. Roy, G.A. Fielding, A. Bandyopadhyay, and S. Bose: Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater. Sci. 1, 74–82 (2013).

    Article  CAS  Google Scholar 

  16. H. Kawamura, A. Ito, S. Miyakawa, P. Layrolle, K. Ojima, N. Ichinose, and T. Tateishi: Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J. Biomed. Mater. Res. 50, 184–190 (2000).

    Article  CAS  Google Scholar 

  17. H. Yuan, J.D. De Bruijn, Y. Li, J. Feng, Z. Yang, K. De Groot, and X. Zhang: Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: A comparative study between porous α-TCP and β-TCP. J. Mater. Sci.: Mater. Med. 12, 7–13 (2001).

    CAS  Google Scholar 

  18. R.Z. LeGeros: Properties of osteoconductive biomaterials: Calcium phosphates. Clin. Orthop. Relat. Res. 395, 81–98 (2002).

    Article  Google Scholar 

  19. R.D. Gaasbeek, H.G. Toonen, R.J. van Heerwaarden, and P. Buma: Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 26, 6713–6719 (2005).

    Article  CAS  Google Scholar 

  20. S. Bose, D. Banerjee, S. Robertson, and S. Vahabzadeh: Enhanced in vivo bone and blood vessel formation by iron oxide and silica doped 3D printed tricalcium phosphate scaffolds. Ann. Biomed. Eng., 1–13 (2018). https://doi.org/10.1007/s10439-018-2040-8.

  21. S. Bose and S. Tarafder: Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 8, 1401–1421 (2012).

    Article  CAS  Google Scholar 

  22. Z.S. Patel, M. Yamamoto, H. Ueda, Y. Tabata, and A.G. Mikos: Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 4, 1126–1138 (2008).

    Article  CAS  Google Scholar 

  23. W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura: Hydroxyapatite ceramics with selected sintering additives. Biomaterials 18, 923–933 (1997).

    Article  CAS  Google Scholar 

  24. T. Kanazawa, T. Umegaki, K. Yamashita, H. Monma, and T. Hiramatsu: Effects of additives on sintering and some properties of calcium phosphates with various Ca/P ratios. J. Mater. Sci. 26, 417–422 (1991).

    Article  CAS  Google Scholar 

  25. M. Pichavant: Effects of B and H2O on liquidus phase relations in the haplogranite system at l kbar. Am. Mineral. 72, 1056–1070 (1987).

    CAS  Google Scholar 

  26. M. Yamaguchi: Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 338, 241–254 (2010).

    Article  CAS  Google Scholar 

  27. Y. Anavi, G. Avishai, S. Calderon, and D.M. Allon: Bone remodeling in onlay beta-tricalcium phosphate and coral grafts to rat calvaria: Microcomputerized tomography analysis. J. Oral Implantol. 37, 379–386 (2011).

    Article  Google Scholar 

  28. M. Hashizume and M. Yamaguchi: Effect of β-alanyl-L-histidinato zinc on differentiation of osteoblastic MC3T3-El cells: Increases in alkaline phosphatase activity and protein concentration. Mol. Cell. Biochem. 131, 19–24 (1994).

    Article  CAS  Google Scholar 

  29. X. Li, Y. Sogo, A. Ito, H. Mutsuzaki, N. Ochiai, T. Kobayashi, S. Nakamura, K. Yamashita, and R.Z. LeGeros: The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater. Sci. Eng., C 29, 969–975 (2009).

    Article  CAS  Google Scholar 

  30. N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien, and P.A. Revell: A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J. Mater. Sci.: Mater. Med. 13, 1199–1206 (2002).

    CAS  Google Scholar 

  31. C.L. Camiré, S. Jegou Saint-Jean, C. Mochales, P. Nevsten, J.S. Wang, L. Lidgren, I. McCarthy, and M.P. Ginebra: Material characterization and in vivo behavior of silicon substituted α-tricalcium phosphate cement. J. Biomed. Mater. Res., Part B 76, 424–431 (2006).

    Article  Google Scholar 

  32. A. Bandyopadhyay, A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, and S. Bose: In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45, 249–260 (2017).

    Article  Google Scholar 

  33. T.L. Arinzeh, S.J. Peter, M.P. Archambault, C. Van Den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala: Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Jt. Surg., Am. Vol. 85, 1927–1935 (2003).

    Article  Google Scholar 

  34. T. Jiang, S.P. Nukavarapu, M. Deng, E. Jabbarzadeh, M.D. Kofron, S.B. Doty, W.I. Abdel-Fattah, and C.T. Laurencin: Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater. 6, 3457–3470 (2010).

    Article  CAS  Google Scholar 

  35. S.K. Nandi, S.K. Ghosh, B. Kundu, D.K. De, and D. Basu: Evaluation of new porous β-tri-calcium phosphate ceramic as bone substitute in goat model. Small Rumin. Res. 75, 144–153 (2008).

    Article  Google Scholar 

  36. C.J. Gibson, V.F. Thornton, and W.A.B. Brown: Incorporation of tetracycline into impeded and unimpeded mandibular incisors of the mouse. Calcif. Tissue Res. 26, 29–31 (1978).

    Article  CAS  Google Scholar 

  37. L.E. Dahners and G.D. Bos: Fluorescent tetracycline labeling as an aid to debridement of necrotic bone in the treatment of chronic osteomyelitis. J. Orthop. Trauma 16, 345–346 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge financial support from the National Institutes of Health (Grant No. NIH-R01-AR-006361). The authors wish to acknowledge the help rendered by Dr. Solaiman Tarafder, Washington State University and Vice Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata, India, for their generous and kind support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S.K., Fielding, G., Banerjee, D. et al. 3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. Journal of Materials Research 33, 1939–1947 (2018). https://doi.org/10.1557/jmr.2018.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.233

Navigation