Abstract
For one-dimensional nanomaterials, the performances are strongly related to the diameters, lengths, morphologies, and structures, implying that it is of great significance to understand the related growth mechanisms and thus to achieve the desired nanostructures. Thermal oxidation of copper has been widely used to fabricate CuO nanowires (NWs), whereas the growth mechanism still remains controversial in spite of the extensive investigations. Therefore, this review aims to offer a critical discussion about the growth mechanisms. First, the effects of different growth conditions on the growth of CuO NWs are introduced for basic understanding. Subsequently, the proposed mechanisms in different literature studies, i.e., the vapor–solid, self-catalyzed growth, stress-induced growth, stress grain boundary (GB) diffusion, and oxygen concentration gradient, are discussed and summarized. It seems that the combination of “stress GB diffusion” and “oxygen concentration gradient” mechanisms could be relevant for the growth of CuO NWs via thermal oxidation of copper.
Similar content being viewed by others
References
L. Liu, L. Zhang, S.M. Kim, and S. Park: Helical metallic micro- and nanostructures: Fabrication and application. Nanoscale 6, 9355 (2014).
Y. Li, X-Y. Yang, Y. Feng, Z-Y. Yuan, and B-L. Su: One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 37, 1 (2012).
M.M. Arafat, B. Dinan, S.A. Akbar, and A.S.M.A. Haseeb: Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 12, 7207 (2012).
R.S. Devan, R.A. Patil, J-H. Lin, and Y-R. Ma: One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012).
G. Filipič and U. Cvelbar: Copper oxide nanowires: A review of growth. Nanotechnology 23, 194001 (2012).
Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).
F. Cao, S. Jia, H. Zheng, L. Zhao, H. Liu, L. Li, L. Zhao, Y. Hu, H. Gu, and J. Wang: Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Mater. 1, 053401 (2017).
H. Liu, F. Cao, H. Zheng, H. Sheng, L. Li, S. Wu, C. Liu, and J. Wang: In situ observation of the sodiation process in CuO nanowires. Chem. Commun. 51, 10443 (2015).
G. Tan, F. Wu, Y. Yuan, R. Chen, T. Zhao, Y. Yao, J. Qian, J. Liu, Y. Ye, R. Shahbazian-Yassar, J. Lu, and K. Amine: Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016).
S. Anandan, X. Wen, and S. Yang: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93, 35 (2005).
C-T. Hsieh, J-M. Chen, H-H. Lin, and H-C. Shih: Field emission from various CuO nanostructures. Appl. Phys. Lett. 83, 3383 (2003).
Y. Feng and X. Zheng: Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 10, 4762 (2010).
X. Liu, W. Yang, L. Chen, and J. Jia: Three-dimensional copper foam supported CuO nanowire arrays: An efficient non-enzymatic glucose sensor. Electrochim. Acta 235, 519 (2017).
D. Zappa, E. Comini, R. Zamani, J. Arbiol, J.R. Morante, and G. Sberveglieri: Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators, B 182, 7 (2013).
H. Sheng, H. Zheng, S. Jia, L. Li, F. Cao, S. Wu, W. Han, H. Liu, D. Zhao, and J. Wang: Twin structures in CuO nanowires. J. Appl. Crystallogr. 49, 462 (2016).
M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang: A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun., 1884 (2003).
K.M. Shrestha, C.M. Sorensen, and K.J. Klabunde: Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368 (2010).
X. Liu, J. Zhang, Y. Kang, S. Wu, and S. Wang: Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing. CrystEngComm 14, 620 (2012).
Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, and F. Gao: Synthesis of copper(II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. J. Mater. Chem. 22, 12609 (2012).
W. Wang, L. Wang, H. Shi, and Y. Liang: A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm 14, 5914 (2012).
A.S. Ethiraj and D.J. Kang: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70 (2012).
B. Toboonsung and P. Singjai: Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J. Alloys Compd. 509, 4132 (2011).
N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, and A. Mondal: CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248 (2011).
X. Jiang, T. Herricks, and Y. Xia: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).
C-T. Hsieh, J-M. Chen, H-H. Lin, and H-C. Shih: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82, 3316 (2003).
A. Kumar, A.K. Srivastava, P. Tiwari, and R.V. Nandedkar: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 (2004).
A.M.B. Gonçalves, L.C. Campos, A.S. Ferlauto, and R.G. Lacerda: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).
K. Mimura, J-W. Lim, M. Isshiki, Y. Zhu, and Q. Jiang: Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall. Mater. Trans. A 37, 1231 (2006).
R.F. Zhang: Film formation in the second step of micro-arc oxidation on magnesium alloys. Corros. Sci. 52, 1285 (2010).
M. Laleh, A.S. Rouhaghdam, T. Shahrabi, and A. Shanghi: Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloys Compd. 496, 548 (2010).
H-D. Yu, Z. Zhang, and M-Y. Han: Metal corrosion for nanofabrication. Small 8, 2621 (2012).
H. Zheng, S. Wu, H. Sheng, C. Liu, Y. Liu, F. Cao, Z. Zhou, X. Zhao, D. Zhao, and J. Wang: Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 104, 141906 (2014).
S. Glass and H. Nienhaus: Continuous monitoring of Mg oxidation by internal exoemission. Phys. Rev. Lett. 93, 168302 (2004).
Y. Wang, Z. Fan, X. Zhou, and G.E. Thompson: Characterisation of magnesium oxide and its interface with α-Mg in Mg–Al-based alloys. Philos. Mag. Lett. 91, 516 (2011).
C. Bungaro, C. Noguera, P. Ballone, and W. Kress: Early oxidation stages of Mg(0001): A density functional study. Phys. Rev. Lett. 79, 4433 (1997).
M.F. Francis and C.D. Taylor: First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg(0001) and thermodynamic stability. Phys. Rev. B 87, 075450 (2013).
G. Zhou, L. Luo, L. Li, J. Ciston, E.A. Stach, and J.C. Yang: Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 109, 235502 (2012).
A. Atkinson and R.I. Taylor: The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos. Mag. A 39, 581 (1979).
K.R. Lawless: The oxidation of metals. Rep. Prog. Phys. 37, 231 (1974).
A. Atkinson: Transport processes during the growth of oxide films at elevated temperature. Rev. Mod. Phys. 57, 437 (1985).
E. Schröder, R. Fasel, and A. Kiejna: Mg(0001) surface oxidation: A two-dimensional oxide phase. Phys. Rev. B 69, 193405 (2004).
R.F. Tylecote: The oxidation of copper in the temperature range 200–800 °C. J. Inst. Met. 81, 681 (1952).
Q. Yang, Z. Guo, X. Zhou, J. Zou, and S. Liang: Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air. Mater. Lett. 153, 128 (2015).
S.C. Vanithakumari, S.L. Shinde, and K.K. Nanda: Controlled synthesis of CuO nanostructures on Cu foil, rod and grid. Mater. Sci. Eng., B 176, 669 (2011).
H. Sheng, H. Zheng, F. Cao, S. Wu, L. Li, C. Liu, D. Zhao, and J. Wang: Anelasticity of twinned CuO nanowires. Nano Res. 8, 3687 (2015).
K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J.Y. Chane-Ching: Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology 18, 275607 (2007).
C-L. Hsu, J-Y. Tsai, and T-J. Hsueh: Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sens. Actuators, B 224, 95 (2016).
M.L. Zhong, D.C. Zeng, Z.W. Liu, H.Y. Yu, X.C. Zhong, and W.Q. Qiu: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).
M. Kaur, K.P. Muthe, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, and J.V. Yakhmi: Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 289, 670 (2006).
C.H. Xu, C.H. Woo, and S.Q. Shi: The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 36, 31 (2004).
C-H. Tu, C-C. Chang, C-H. Wang, H-C. Fang, M.R.S. Huang, Y-C. Li, H-J. Chang, C-H. Lu, Y-C. Chen, R-C. Wang, Y. Tzeng, and C-P. Liu: Resistive memory devices with high switching endurance through single filaments in Bi-crystal CuO nanowires. J. Alloys Compd. 615, 754 (2014).
Z. Han, L. Lu, H.W. Zhang, Z.Q. Yang, F.H. Wang, and K. Lu: Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper. Oxid. Met. 63, 261 (2005).
B.J. Hansen, H-l. Chan, J. Lu, G. Lu, and J. Chen: Short-circuit diffusion growth of long Bi-crystal CuO nanowires. Chem. Phys. Lett. 504, 41 (2011).
L. Yuan and G. Zhou: Enhanced CuO nanowire formation by thermal oxidation of roughened copper. J. Electrochem. Soc. 159, C205 (2012).
P. Shao, S. Deng, J. Chen, and N. Xu: Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires. Nanoscale Res. Lett. 6, 86 (2011).
X. Li, J. Zhang, Y. Yuan, L. Liao, and C. Pan: Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J. Appl. Phys. 108, 024308 (2010).
J-P. Wang and W.D. Cho: Oxidation behavior of pure copper in oxygen and/or water vapor at intermediate temperature. ISIJ Int. 49, 1926 (2009).
P.M. Rao and X. Zheng: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).
R. Simas, G.N. Albert, J. Hua, T. Ying, I.K. Victor, S. Jani, D.O. Elena, N.B. Sofia, N.O. Alexander, and I.K. Esko: A novel method for metal oxide nanowire synthesis. Nanotechnology 20, 165603 (2009).
G. Filipič, O. Baranov, M. Mozetič, and U. Cvelbar: Growth dynamics of copper oxide nanowires in plasma at low pressures. J. Appl. Phys. 117, 043304 (2015).
A. Altaweel, G. Filipič, T. Gries, and T. Belmonte: Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. J. Cryst. Growth 407, 17 (2014).
R.S. Wagner and W.C. Ellis: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
S.S. Brenner and G.W. Sears: Mechanism of whisker growth—III nature of growth sites. Acta Metall. 4, 268 (1956).
J-H. Park and K. Natesan: Oxidation of copper and electronic transport in copper oxides. Oxid. Met. 39, 411 (1993).
Y. Zhu, K. Mimura, and M. Isshiki: Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600–1000 °C. Corros. Sci. 47, 537 (2005).
L. Yuan, Y. Wang, R. Mema, and G. Zhou: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).
L. Lu, J. Wang, H. Zheng, D. Zhao, R. Wang, and J. Gui: Spontaneous formation of filamentary Cd whiskers and degradation of CdMgYb icosahedral quasicrystal under ambient conditions. J. Mater. Res. 27, 1895 (2012).
M. Farbod, N. Meamar Ghaffari, and I. Kazeminezhad: Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram. Int. 40, 517 (2014).
J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, and P.X. Yan: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).
S-K. Lee and W-H. Tuan: Scalable process to produce CuO nanowires and their formation mechanism. Mater. Lett. 117, 101 (2014).
R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).
F. Cao, H. Zheng, S. Jia, H. Liu, L. Li, B. Chen, X. Liu, S. Wu, H. Sheng, R. Xing, D. Zhao, and J. Wang: Atomistic observation of structural evolution during magnesium oxide growth. J. Phys. Chem. C 120, 26873 (2016).
C. Xu, X. Yang, S-Q. Shi, Y. Liu, C. Surya, and C. Woo: Effects of local gas-flow field on synthesis of oxide nanowires during thermal oxidation. Appl. Phys. Lett. 92, 253117 (2008).
K.P. Rice, J. Han, I.P. Campbell, and M.P. Stoykovich: In situ absorbance spectroscopy for characterizing the low temperature oxidation kinetics of sputtered copper films. Oxid. Met. 83, 89 (2015).
C.H. Xu, C.H. Woo, and S.Q. Shi: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).
C. Wang, Y. Wang, X. Liu, F. Diao, L. Yuan, and G. Zhou: Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles–CuO nanowires with enhanced photoactivity. Phys. Chem. Chem. Phys. 16, 17487 (2014).
F. Cao, S. Jia, X. Liu, Y. Liu, H. Zheng, and J. Wang: Orientation domains in CuO nanowires. J. Chin. Electron Microsc. Soc. 36, 222 (2017).
A. Altaweel, T. Gries, S. Migot, P. Boulet, A. Mézin, and T. Belmonte: Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress. Surf. Coat. Technol. 305, 254 (2016).
U. Cvelbar: Towards large-scale plasma-assisted synthesis of nanowires. J. Phys. D: Appl. Phys. 44, 174014 (2011).
K. Ostrikov, I. Levchenko, U. Cvelbar, M. Sunkara, and M. Mozetic: From nucleation to nanowires: A single-step process in reactive plasmas. Nanoscale 2, 2012 (2010).
U. Cvelbar, Z. Chen, M.K. Sunkara, and M. Mozetič: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).
Z. Chen, U. Cvelbar, M. Mozetič, J. He, and M.K. Sunkara: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).
A. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P. Mudimela, S. Shandakov, L. Nasibulina, S. Jani, and E. Kauppinen: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).
L. Zou, J. Li, D. Zakharov, E.A. Stach, and G. Zhou: In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).
L. Li, L. Luo, J. Ciston, W.A. Saidi, E.A. Stach, J.C. Yang, and G. Zhou: Surface-step-induced oscillatory oxide growth. Phys. Rev. Lett. 113, 136104 (2014).
A. Ferris, B. Reig, A. Eddarir, J-F. Pierson, S. Garbarino, D. Guay, and D. Pech: Atypical properties of FIB-patterned RuOx nanosupercapacitors. ACS Energy Lett. 2, 1734 (2017).
ACKNOWLEDGMENT
L. Xiang would like to thank Dr. Cao for many valuable discussions.
Author information
Authors and Affiliations
Corresponding authors
Additional information
This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.
Rights and permissions
About this article
Cite this article
Xiang, L., Guo, J., Wu, C. et al. A brief review on the growth mechanism of CuO nanowires via thermal oxidation. Journal of Materials Research 33, 2264–2280 (2018). https://doi.org/10.1557/jmr.2018.215
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2018.215