Skip to main content
Log in

Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Flower-like AgI/Bi5O7I hybrid photocatalysts were fabricated via a hydrothermal method and the subsequent heating process with AgI/Bi4O5I2 as the intermediate. X-ray powder diffraction, Raman, X-ray photoelectron spectroscopy, diffuse reflectance spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence, and electrochemical methods were used to reveal the structure, elemental content, morphology, and charge separation capabilities of the as-prepared samples. The photocatalytic test showed that the AgI/Bi5O7I composites own much higher photoactivity than pure AgI and Bi5O7I. Based on the result of XPS analysis, the composite is believed to be the Ag/AgI/Bi5O7I system. Due to the suitable band potentials of AgI and Bi5O7I, the ternary system can form a heterojunction structure which works in a Z-scheme mechanism with Ag nanoparticles as the transfer media. The guided charge transfer in the composite prolongs the life time of charge carriers and eventually leads to the high photocatalytic activity of AgI/Bi5O7I. Additionally, the flower-like structure of the composite also contributes to the photocatalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J.Q. Wen, X. Li, W. Liu, Y.P. Fang, J. Xie, and Y.H. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  2. J.Q. Wen, J. Xie, X.B. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    Article  CAS  Google Scholar 

  3. L. Ye, Y. Su, X. Jin, H. Xie, and C. Zhang: Recent advances in BiOX (X = Cl, Br, and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci.: Nano 1, 90 (2014).

    CAS  Google Scholar 

  4. H. Huang, K. Xiao, T.R. Zhang, F. Dong, and Y.H. Zhang: Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl. Catal., B 203, 879 (2017).

    Article  CAS  Google Scholar 

  5. P. Ye, J.J. Xie, Y.M. He, L. Zhang, T.H. Wu, and Y. Wu: Hydrolytic synthesis of flowerlike BiOCl and its photocatalytic performance under visible light. Mater. Lett. 108, 168 (2013).

    Article  CAS  Google Scholar 

  6. X. Zhang, Z.H. Ai, F.L. Jia, and L.Z. Zhang: Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747 (2008).

    Article  CAS  Google Scholar 

  7. X.F. Chang, J. Huang, Q.Y. Tan, M. Wang, G.B. Ji, S.B. Deng, and G. Yu: Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal. Commun. 10, 1957 (2009).

    Article  CAS  Google Scholar 

  8. J.L. Zhao, X.W. Lv, X.X. Wang, J. Yang, X.J. Yang, and X.B. Lu: Fabrication of BiOX (X = Cl, Br, and I) nanosheeted films by anodization and their photocatalytic properties. Mater. Lett. 158, 40 (2015).

    Article  CAS  Google Scholar 

  9. W. Su, J. Wang, Y. Huang, W. Wang, L. Wu, X. Wang, and P. Liu: Synthesis and catalytic performances of a novel photocatalyst BiOF. Scripta Mater. 60, 345 (2010).

    Article  CAS  Google Scholar 

  10. D.F. Sun, J.P. Li, Z.H. Feng, L. He, B. Zhao, T.Y. Wang, R.X. Li, S. Yin, and T. Sato: Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity. Catal. Commun. 51, 1 (2014).

    Article  CAS  Google Scholar 

  11. X. Li, J.G. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    Article  CAS  Google Scholar 

  12. Z. Feng, L. Zeng, Y.J. Chen, Y.Y. Ma, C.R. Zhao, R.S. Jin, Y. Lu, Y. Wu, and Y.M. He: In-situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  13. H.B. He, S.S. Xue, Z. Wu, C.L. Yu, K. Yang, L.H. Zhu, W.Q. Zhou, and R.Y. Liu: Synthesis and characterization of robust Ag2S/Ag2WO4 composite microrods with enhanced photocatalytic performance. J. Mater. Res. 31, 2598 (2016).

    Article  CAS  Google Scholar 

  14. Y.M. He, L.H. Zhang, M.H. Fan, X.X. Wang, M.L. Walbridge, Q.Y. Nong, Y. Wu, and L.H. Zhao: Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mater. Sol. Cells 137, 175 (2015).

    Article  CAS  Google Scholar 

  15. J.T. Yan, M.Q. Xu, B. Chai, H.B. Wang, C.L. Wang, and Z.D. Ren: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603 (2017).

    Article  CAS  Google Scholar 

  16. L. Ye, J.Y. Liu, Z. Jiang, T.Y. Peng, and L. Zan: Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal., B 142–143, 1 (2013).

    Google Scholar 

  17. M. Gopannagari, D.P. Kumar, D.A. Reddy, S. Hong, M.I. Song, and T.K. Kim: In situ preparation of few-layered WS2 nanosheets and exfoliation into bilayers on CdS nanorods for ultrafast charge Carrier migrations toward enhanced photocatalytic hydrogen production. J. Catal. 351, 153 (2017).

    Article  CAS  Google Scholar 

  18. X. Dai, M.L. Xie, S.G. Meng, X.L. Fu, and S.F. Chen: Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal., B 158–159, 382 (2014).

    Article  CAS  Google Scholar 

  19. Q. Yang, J. Huang, J.B. Zhong, J.F. Chen, J.Z. Li, and S.Y. Sun: Charge separation behaviors of novel AgI/BiOI heterostructures with enhanced solar-photocatalytic performance. Curr. Appl. Phys. 17, 1202 (2017).

    Article  Google Scholar 

  20. J. Zhang, W.C. Wu, S. Yan, G. Chu, S.L. Zhao, X. Wang, and C. Li: Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl. Surf. Sci. 344, 249 (2015).

    Article  CAS  Google Scholar 

  21. K.L. He, J. Xie, X.Y. Luo, J.Q. Wen, S. Ma, X. Li, Y.P. Fang, and X.C. Zhang: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).

    Article  CAS  Google Scholar 

  22. Y.J. Sun, X. Xiao, X.A. Dong, F. Dong, and W. Zhang: Heterostructured BiOI@La(OH)3 nanorods with enhanced visible light photocatalytic NO removal. Chin. J. Catal. 38, 217 (2017).

    Article  CAS  Google Scholar 

  23. S.Q. Han, J. Li, K.L. Yang, and J. Lin: Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chin. J. Catal. 36, 2119 (2015).

    Article  CAS  Google Scholar 

  24. S.M. Sun, W.Z. Wang, L. Zhang, L. Zhou, W.Z. Yin, and M. Shang: Visible light-induced efficient contaminant removal by Bi5O7I. Environ. Sci. Technol. 43, 2005 (2009).

    Article  CAS  Google Scholar 

  25. J. Yang, L.J. Xu, C.L. Liu, and T.P. Xie: Preparation and photocatalytic activity of porous Bi5O7I nanosheets. Appl. Surf. Sci. 319, 265 (2014).

    Article  CAS  Google Scholar 

  26. Z.H. Zhao, M. Wang, T.Z. Yang, M.H. Fang, L.N. Zhang, H.K. Zhu, C. Tang, and Z.H. Huang: In situ co-precipitation for the synthesis of an Ag/AgBr/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J. Mol. Catal. A: Chem. 424, 8 (2016).

    Article  CAS  Google Scholar 

  27. L. Zhang, W.Z. Wang, S.M. Sun, Z.J. Zhang, J.H. Xu, and J. Ren: Photocatalytic activity of Er3+, Yb3+ doped Bi5O7I. Catal. Commun. 26, 88 (2012).

    Article  CAS  Google Scholar 

  28. J. Cao, X. Li, H.L. Lin, B. Xu, B.Y. Luo, and S.F. Chen: Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance. Mater. Lett. 76, 181 (2012).

    Article  CAS  Google Scholar 

  29. Y.F. Zhang, G.Q. Zhu, J.Z. Gao, R.L. Zhu, M. Hojamberdiev, X.M. Wei, and P. Liu: Synthesis of plasmonic enhance sphere-like Ag/AgI/Bi5O7I photocatalysts with improved visible-light responsive activity under LED light irradiation. J. Mater. Sci.: Mater. Electron. 28, 5460 (2017).

    CAS  Google Scholar 

  30. F. Chen, Q. Yang, F.B. Yao, S.N. Wang, J. Sun, H.X. An, K.X. Yi, Y.L. Wang, Y.Y. Zhou, L.L. Wang, X.M. Li, D.B. Wang, and G.M. Zeng: Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions. J. Catal. 352, 160 (2017).

    Article  CAS  Google Scholar 

  31. X. Xiao, C.L. Xing, G.P. He, X.X. Zuo, J.M. Nan, and L.S. Wang: Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl. Catal., B 148–149, 154 (2014).

    Article  CAS  Google Scholar 

  32. X.Z. Liu, X.L. Jiang, Z.Q. Chen, J.X. Yu, and Y.M. He: Preparation of Bi3O4Br/BiOCl composite via ion-etching method and its excellent photocatalytic activity. Mater. Lett. 210, 194 (2018).

    Article  CAS  Google Scholar 

  33. M. Cui, J.X. Yu, H.J. Lin, Y.W. Wu, L.H. Zhao, and Y.M. He: In situ preparation of Z-scheme AgI/Bi5O7I hybrid and its excellent photocatalytic activity. Appl. Surf. Sci. 387, 912 (2016).

    Article  CAS  Google Scholar 

  34. C.H. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, and M. Aono: AgI/Ag heterojunction nanowires: Facile electrochemical synthesis, photoluminescence, and enhanced ionic conductivity. Adv. Funct. Mater. 17, 1466 (2007).

    Article  CAS  Google Scholar 

  35. Y.G. Xu, S.Q. Huang, H.Y. Ji, L.Q. Jing, M.Q. He, H. Xu, Q. Zhang, and H.M. Li: Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability. RSC Adv. 6, 6905 (2016).

    Article  CAS  Google Scholar 

  36. T. Potlog, D. Duca, and M. Dobromir: Temperature-dependent growth and XPS of Ag-doped ZnTe thin films deposited by close space sublimation method. Appl. Surf. Sci. 352, 33 (2015).

    Article  CAS  Google Scholar 

  37. M. Yan, Y.L. Wu, F.F. Zhu, Y.Q. Hua, and W.D. Shi: The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys. Chem. Chem. Phys. 18, 3308 (2016).

    Article  CAS  Google Scholar 

  38. J.X. Yu, Z.Q. Chen, Y. Wang, Y.Y. Ma, Z. Feng, H.J. Lin, Y. Wu, L.H. Zhao, and Y.M. He: Synthesis of KNbO3/g-C3N4 composite and its new application in photocatalytic H2 generation under visible light irradiation. J. Mater. Sci. 53, 7453 (2018).

    Article  CAS  Google Scholar 

  39. H.F. Cheng, B.B. Huang, Y. Dai, X.Y. Qin, and X.Y. Zhang: One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26, 6618 (2010).

    Article  CAS  Google Scholar 

  40. Y.M. He, J. Cai, T.T. Li, Y. Wu, H.J. Lin, L.H. Zhao, and M.F. Luo: Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible light irradiation. Chem. Eng. J. 215–216, 721 (2013).

    Article  CAS  Google Scholar 

  41. N.T. Khoa, S.W. Kim, D.V. Thuan, H.N. Tien, S.H. Hur, E.J. Kim, and S.H. Hahn: Fast and effective electron transport in a Au–graphene–ZnO hybrid for enhanced photocurrent and photocatalysis. RSC Adv. 5, 63964 (2015).

    Article  CAS  Google Scholar 

  42. S. Vadivela, A. Nirmalesh Naveenb, V.P. Kamalakannana, P. Caoc, and N. Balasubramaniana: Facile large scale synthesis of Bi2S3 nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application. Appl. Surf. Sci. 351, 635 (2015).

    Article  CAS  Google Scholar 

  43. M. Cui, Q.Y. Nong, J.X. Yu, H.J. Lin, Y. Wu, X.L. Jiang, X.Z. Liu, and Y.M. He: Preparation, characterization, and photocatalytic activity of CdV2O6 nanorods decorated g-C3N4 composite. J. Mol. Catal. A: Chem. 423, 240 (2016).

    Article  CAS  Google Scholar 

  44. X.X. Jin, X.Q. Fan, J.J. Tian, R.L. Cheng, M.L. Li, and L.X. Zhang: MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 6, 5266 (2016).

    Google Scholar 

  45. J.X. Yu, Z.Q. Chen, L. Zeng, Y.Y. Ma, Z. Feng, Y. Wu, H.J. Lin, L.H. Zhao, and Y.M. He: Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 179, 45 (2018).

    Article  CAS  Google Scholar 

  46. L.Z. Dong, Y.M. He, T.T. Li, J. Cai, W.D. Hu, S.S. Wang, H.J. Lin, M.F. Luo, X.D. Yi, L.H. Zhao, W.Z. Weng, and H.L. Wan: A comparative study on the photocatalytic activities of two visible-light plasmonic photocatalysts: AgCl–SmVO4 and AgI–SmVO4 composites. Appl. Catal., A 472, 143 (2014).

    Article  CAS  Google Scholar 

  47. S.H. Tu, M.L. Lu, X. Xiao, C.X. Zheng, H. Zhong, X.X. Zuo, and J.M. Nan: Flower-like Bi4O5I2/Bi5O7I nanocomposite: Facile hydrothermal synthesis and efficient photocatalytic degradation of propylparaben under visible-light irradiation. RSC Adv. 6, 44552 (2016).

    Article  CAS  Google Scholar 

  48. G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, and P.K. Wong: Degradation of acid orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 76, 1185 (2009).

    Article  CAS  Google Scholar 

  49. L.H. Zhao, L.H. Zhang, H.J. Lin, Q.Y. Nong, M. Cui, Y. Wu, and Y.M. He: Fabrication and characterization of hollow CdMoO4 coupled g-C3N4 heterojunction with enhanced photocatalytic activity. J. Hazard. Mater. 299, 333 (2015).

    Article  CAS  Google Scholar 

  50. S.R. Fu, Y.M. He, Q. Wu, Y. Wu, and T.H. Wu: Visible-light responsive plasmonic Ag2O/Ag/gC3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2015).

    Article  CAS  Google Scholar 

  51. J.X. Yu, Z.Q. Chen, Q.Q. Chen, Y. Wang, H.J. Lin, X. Hu, L.H. Zhao, and Y.M. He: Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration. Int. J. Hydrogen Energy 43, 4347 (2018).

    Article  CAS  Google Scholar 

  52. Y.J. Wang, Y.M. He, T.T. Li, J. Cai, M.F. Luo, and L.H. Zhao: Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chem. Eng. J. 189, 473 (2012).

    Article  CAS  Google Scholar 

  53. D.F. Wang, T. Kako, and J.H. Ye: Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc. 130, 2724 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Natural Science Foundation of Zhejiang Province in China (LY14B030002 and LY16B030002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Ma, Y., Zhao, C. et al. Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation. Journal of Materials Research 33, 2385–2395 (2018). https://doi.org/10.1557/jmr.2018.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.201

Navigation