Skip to main content

Advertisement

Log in

The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Architected materials are materials engineered to utilize their topological aspects to enhance the related physical and mechanical properties. With the witnessed progressive advancements in fabrication techniques, obstacles and challenges experienced in manufacturing geometrically complex architected materials are mitigated. Different strut-based architected lattice structures have been investigated for their topology-property relationship. However, the focus on lattice design has recently shifted toward structures with mathematically defined architectures. In this work, we investigate the architecture-property relationship associated with the possible configurations of employing the mathematically attained Schoen’s I-WP (IWP) minimal surface to create lattice structures. Results of mechanical testing showed that sheet-based IWP lattice structures exhibit a stretching-dominated behavior with the highest structural efficiency as compared to other forms of strut-based and skeletal-based lattice structures. This study presents experimental and computational evidence of the robustness and suitability of sheet-based IWP structures for different engineering applications, where strong and lightweight materials with exceptional energy absorption capabilities are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. F. Javid, P. Wang, A. Shanian, and K. Bertoldi: Architected materials with ultra-low porosity for vibration control. Adv. Mater. 28, 5943 (2016).

    Article  CAS  Google Scholar 

  2. S. Babaee, N. Viard, P. Wang, N.X. Fang, and K. Bertoldi: Harnessing deformation to switch on and off the propagation of sound. Adv. Mater. 28, 1631 (2016).

    Article  CAS  Google Scholar 

  3. X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, and T. Weisgraber: Multiscale metallic metamaterials. Nat. Mater. 15, 1100 (2016).

    Article  CAS  Google Scholar 

  4. B. Haghpanah, L. Salari-Sharif, P. Pourrajab, J. Hopkins, and L. Valdevit: Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915 (2016).

    Article  CAS  Google Scholar 

  5. J. Bauer, A. Schroer, R. Schwaiger, I. Tesari, C. Lange, L. Valdevit, and O. Kraft: Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105 (2015).

    Article  Google Scholar 

  6. H. Xu and D. Pasini: Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci. Rep. 6, 34924 (2016).

    Article  CAS  Google Scholar 

  7. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter: Ultralight metallic microlattices. Science 334, 962 (2011).

    Article  CAS  Google Scholar 

  8. A. Rafsanjani, A. Akbarzadeh, and D. Pasini: Snapping mechanical metamaterials under tension. Adv. Mater. 27, 5931 (2015).

    Article  CAS  Google Scholar 

  9. L. Wang, J. Lau, E.L. Thomas, and M.C. Boyce: Co-continuous composite materials for stiffness, strength, and energy dissipation. Adv. Mater. 23, 1524 (2011).

    Article  CAS  Google Scholar 

  10. O. Al-Ketan, R.K.A. Al-Rub, and R. Rowshan: Mechanical properties of a new type of architected interpenetrating phase composite materials. Adv. Mater. Technol. 2, 1600235 (2017).

    Article  CAS  Google Scholar 

  11. J.T. Overvelde, J.C. Weaver, C. Hoberman, and K. Bertoldi: Rational design of reconfigurable prismatic architected materials. Nature 541, 347 (2017).

    Article  CAS  Google Scholar 

  12. M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, and L. Gibson: Metal Foams: A Design Guide (Elsevier, Oxford, United Kingdom, 2000).

    Google Scholar 

  13. P. Heinl, L. Müller, C. Körner, R.F. Singer, and F.A. Müller: Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536 (2008).

    Article  CAS  Google Scholar 

  14. D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo: Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 7, 1398 (2011).

    Article  CAS  Google Scholar 

  15. T. Freyman, I. Yannas, and L. Gibson: Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci. 46, 273 (2001).

    Article  CAS  Google Scholar 

  16. P. Jain and T. Pradeep: Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59 (2005).

    Article  CAS  Google Scholar 

  17. A. Montillet, J. Comiti, and J. Legrand: Application of metallic foams in electrochemical reactors of filter-press type part I: Flow characterization. J. Appl. Electrochem. 23, 1045 (1993).

    Article  CAS  Google Scholar 

  18. L. Giani, G. Groppi, and E. Tronconi: Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind. Eng. Chem. Res. 44, 4993 (2005).

    Article  CAS  Google Scholar 

  19. K. Boomsma, D. Poulikakos, and F. Zwick: Metal foams as compact high performance heat exchangers. Mech. Mater. 35, 1161 (2003).

    Article  Google Scholar 

  20. T. Lu, H. Stone, and M. Ashby: Heat transfer in open-cell metal foams. Acta Mater. 46, 3619 (1998).

    Article  CAS  Google Scholar 

  21. D.P. Haack, K.R. Butcher, T. Kim, and T. Lu: Novel lightweight metal foam heat exchangers. In Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, November 11-16, 2001, New York, NY IMECE2001, (2001).

  22. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, and J.A. Jackson: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373 (2014).

    Article  CAS  Google Scholar 

  23. M. Rashed, M. Ashraf, R. Mines, and P.J. Hazell: Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater. Des. 95, 518 (2016).

    Article  CAS  Google Scholar 

  24. L. Liu, P. Kamm, F. García-Moreno, J. Banhart, and D. Pasini: Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by selective laser melting. J. Mech. Phys. Solids 107, 160 (2017).

    Article  Google Scholar 

  25. C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, and D. Raymont: Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J. Mater. Process. Technol. 214, 856 (2014).

    Article  CAS  Google Scholar 

  26. C. Yan, L. Hao, A. Hussein, and P. Young: Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 51, 61 (2015).

    Article  CAS  Google Scholar 

  27. C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater. Des. 55, 533 (2014).

    Article  CAS  Google Scholar 

  28. H. Alsalla, L. Hao, and C. Smith: Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique. Mater. Sci. Eng., A 669, 1 (2016).

    Article  CAS  Google Scholar 

  29. F. Brenne, T. Niendorf, and H. Maier: Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 213, 1558 (2013).

    Article  CAS  Google Scholar 

  30. S. Sing, W. Yeong, F. Wiria, and B. Tay: Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Exp. Mech. 56, 735 (2016).

    Article  CAS  Google Scholar 

  31. O. Al-Ketan, A. Soliman, A.M. AlQubaisi, and R.K. Abu Al-Rub: Nature-inspired lightweight cellular co-continuous composites with architected periodic gyroidal structures. Adv. Eng. Mater., 1700549, doi: https://doi.org/10.1002/adem.201700549 (2017).

  32. F. Bobbert, K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor: Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 53 (Suppl. C), 572 (2017).

    Article  CAS  Google Scholar 

  33. S. Rajagopalan and R.A. Robb: Schwarz meets schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med. Image Anal. 10, 693 (2006).

    Article  Google Scholar 

  34. S. Torquato and A. Donev: Minimal surfaces and multifunctionality. Proc. R. Soc. London, Ser. A 460, 1849 (2004).

    Article  Google Scholar 

  35. D-J. Yoo: New paradigms in cellular material design and fabrication. Int. J. Precis. Eng. Manuf. 16, 2577 (2015).

    Article  Google Scholar 

  36. Q. Feng, Q. Tang, Z. Liu, Y. Liu, and R. Setchi: An investigation of the mechanical properties of metallic lattice structures fabricated using selective laser melting. Proc. Inst. Mech. Eng., Part B, 0954405416668924, doi: https://doi.org/10.1177/0954405416668924 (2016).

  37. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y.M. Xie: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127 (2016).

    Article  CAS  Google Scholar 

  38. S. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 10, 580 (2014).

    Article  CAS  Google Scholar 

  39. S.M. Ahmadi, S.A. Yavari, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, and A.A. Zadpoor: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties. Materials 8, 1871 (2015).

    Article  CAS  Google Scholar 

  40. V.S. Deshpande, N.A. Fleck, and M.F. Ashby: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747 (2001).

    Article  CAS  Google Scholar 

  41. S. Arabnejad, R.B. Johnston, J.A. Pura, B. Singh, M. Tanzer, and D. Pasini: High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 30, 345 (2016).

    Article  CAS  Google Scholar 

  42. S. McKown, Y. Shen, W. Brookes, C. Sutcliffe, W. Cantwell, G. Langdon, G. Nurick, and M. Theobald: The quasi-static and blast loading response of lattice structures. Int. J. Impact Eng. 35, 795 (2008).

    Article  Google Scholar 

  43. L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, and C.J. Sutcliffe: Selective laser melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res., Part B 89, 325 (2009).

    Article  CAS  Google Scholar 

  44. Y.H. Ha, R.A. Vaia, W.F. Lynn, J.P. Costantino, J. Shin, A.B. Smith, P.T. Matsudaira, and E.L. Thomas: Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Adv. Mater. 16, 1091 (2004).

    Article  CAS  Google Scholar 

  45. S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, and G.E. Schröder-Turk: Minimal surface scaffold designs for tissue engineering. Biomaterials 32, 6875 (2011).

    Article  CAS  Google Scholar 

  46. D. Yoo: New paradigms in hierarchical porous scaffold design for tissue engineering. Mater. Sci. Eng., C 33, 1759 (2013).

    Article  CAS  Google Scholar 

  47. D.W. Abueidda, R. Abu Al-Rub, A.S. Dalaq, D-W. Lee, K.A. Khan, and I. Jasiuk: Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech. Mater. 95, 102 (2016).

    Article  Google Scholar 

  48. D.W. Abueidda, R. Abu Al-Rub, A.S. Dalaq, H.A. Younes, A.A. Al Ghaferi, and T.K. Shah: Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements. Compos. Sci. Technol. 118, 127 (2015).

    Article  CAS  Google Scholar 

  49. D.W. Abueidda, M. Bakir, R.K.A. Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk: Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater. Des. 122, 255 (2017).

    Article  CAS  Google Scholar 

  50. D.W. Abueidda, A.S. Dalaq, R. Abu Al-Rub, and H.A. Younes: Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements. Int. J. Mech. Sci. 92, 80 (2015).

    Article  Google Scholar 

  51. D.W. Abueidda, A.S. Dalaq, R.K.A. Al-Rub, and I. Jasiuk: Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites. Compos. Struct. 133, 85 (2015).

    Article  Google Scholar 

  52. O. Al-Ketan, M.A. Assad, and R.K. Abu Al-Rub: Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures. Compos. Struct. 176, 9–19 (2017).

    Article  Google Scholar 

  53. J. Kadkhodapour, H. Montazerian, A.C. Darabi, A. Zargarian, and S. Schmauder: The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 70, 28–42 (2016).

    Article  CAS  Google Scholar 

  54. S.C. Han, J.W. Lee, and K. Kang: A new type of low density material: Shellular. Adv. Mater. 27, 5506 (2015).

    Article  CAS  Google Scholar 

  55. I. Maskery, N.T. Aboulkhair, A. Aremu, C. Tuck, and I. Ashcroft: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 16, 24–29 (2017).

    CAS  Google Scholar 

  56. O. Elliott, S. Gray, M. McClay, B. Nassief, A. Nunnelley, E. Vogt, J. Ekong, K. Kardel, A. Khoshkhoo, and G. Proaño: Design and manufacturing of high surface area 3D-printed media for moving bed bioreactors for wastewater treatment. J. Contemp. Water Res. Educ. 160, 144 (2017).

    Article  Google Scholar 

  57. T. Femmer, A.J. Kuehne, and M. Wessling: Estimation of the structure dependent performance of 3-D rapid prototyped membranes. Chem. Eng. J. 273, 438 (2015).

    Article  CAS  Google Scholar 

  58. N. Sreedhar, N. Thomas, O. Al-Ketan, R. Rowshan, H. Hernandez, R.K. Abu Al-Rub, and H.A. Arafat: 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF. Desalination 425, 12 (2018).

    Article  CAS  Google Scholar 

  59. D. Cvijović and J. Klinowski: The computation of the triply periodic I-WP minimal surface. Chem. Phys. Lett. 226, 93 (1994).

    Article  Google Scholar 

  60. K. Michielsen and J. Kole: Photonic band gaps in materials with triply periodic surfaces and related tubular structures. Phys. Rev. B 68, 115107 (2003).

    Article  CAS  Google Scholar 

  61. S. Li: Boundary conditions for unit cells from periodic microstructures and their implications. Compos. Sci. Technol. 68, 1962 (2008).

    Article  Google Scholar 

  62. A.S. Dalaq, D.W. Abueidda, R.K. Abu Al-Rub, and I.M. Jasiuk: Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. Int. J. Solids Struct. 83, 169 (2016).

    Article  Google Scholar 

  63. C. Wang, L. Feng, and I. Jasiuk: Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. J. Biomech. Eng. 131, 121008 (2009).

    Article  Google Scholar 

  64. S. Khaderi, V. Deshpande, and N. Fleck: The stiffness and strength of the gyroid lattice. Int. J. Solids Struct. 51, 3866 (2014).

    Article  Google Scholar 

  65. D-W. Lee, K.A. Khan, and R.K. Abu Al-Rub: Stiffness and yield strength of architectured foams based on the Schwarz Primitive triply periodic minimal surface. Int. J. Plast. 95 (Suppl. C), 1 (2017).

    Article  Google Scholar 

  66. A. Vigliotti, V.S. Deshpande, and D. Pasini: Non linear constitutive models for lattice materials. J. Mech. Phys. Solids 64, 44 (2014).

    Article  Google Scholar 

  67. L. Valdevit, S.W. Godfrey, T.A. Schaedler, A.J. Jacobsen, and W.B. Carter: Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design. J. Mater. Res. 28, 2461 (2013).

    Article  CAS  Google Scholar 

  68. S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J-P. Kruth: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng., A 528, 7423 (2011).

    Article  CAS  Google Scholar 

  69. Z.S. Bagheri, D. Melancon, L. Liu, R.B. Johnston, and D. Pasini: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 70, 17 (2017).

    Article  CAS  Google Scholar 

  70. R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J-P. Kruth, and J. Van Humbeeck: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 5, 77 (2015).

    CAS  Google Scholar 

  71. E. Sallica-Leva, A. Jardini, and J. Fogagnolo: Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 26, 98 (2013).

    Article  CAS  Google Scholar 

  72. C. Qiu, S. Yue, N.J. Adkins, M. Ward, H. Hassanin, P.D. Lee, P.J. Withers, and M.M. Attallah: Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater. Sci. Eng., A 628, 188 (2015).

    Article  CAS  Google Scholar 

  73. V. Deshpande, M. Ashby, and N. Fleck: Foam topology: Bending versus stretching dominated architectures. Acta Mater. 49, 1035 (2001).

    Article  CAS  Google Scholar 

  74. J.C. Maxwell: L. on the calculation of the equilibrium and stiffness of frames. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 27, 294 (1864).

    Article  Google Scholar 

  75. M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, and M. Brandt: Deformation and failure behaviour of Ti–6Al–4V lattice structures manufactured by selective laser melting (SLM). Int. J. Adv. Manuf. Technol. 84, 1391 (2016).

    Google Scholar 

  76. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, United Kingdom, 1999).

    Google Scholar 

  77. A. Vigliotti and D. Pasini: Stiffness and strength of tridimensional periodic lattices. Comput. Methods Appl. Mech. Eng. 229, 27 (2012).

    Article  Google Scholar 

  78. J. Kadkhodapour, H. Montazerian, A.C. Darabi, A. Anaraki, S. Ahmadi, A. Zadpoor, and S. Schmauder: Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 50, 180 (2015).

    Article  CAS  Google Scholar 

  79. K. Kempen, E. Yasa, L. Thijs, J-P. Kruth, and J. Van Humbeeck: Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys. Procedia 12, 255 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The first and third authors acknowledge the financial support provided by Masdar Institute. The experimental parts were printed using Core Technology Platform resources at NYU Abu Dhabi. We thank Khulood Alawadi for assistance with 3D printing. The authors would also like to thank Alia Abu Ali for helping in designing the BCC lattice structures and Dr. Kamran Khan from Khalifa University of Science, Technology and Research for helping in testing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid K. Abu Al-Rub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ketan, O., Abu Al-Rub, R.K. & Rowshan, R. The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. Journal of Materials Research 33, 343–359 (2018). https://doi.org/10.1557/jmr.2018.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.1

Navigation